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ABSTRACT

The mechanical interactions between "smart" host structures and embedded
distributions of piezoelectric microsensors and microactuators are analyzed using
Eshelby’s classical equivalent inclusion technique. A first order estimate of the changes
in the mechanical energy of the system due to actuation loads is obtained through
appropriate simplifying assumptions. Preliminary linearized results are presented for
PZT-5H devices embedded in a simply supported ALPLEX isotropic beam. Results are
also presented for strain concentrations in the host around the embedded microdevice,
as a result of external and actuation loads.

These results of the interaction mechanics provide preliminary insights for (i)
obtaining accurate transfer functions for control of the structure; and (ii) assessing the
damage (and associated loss of reliability) caused to the host and to the actuator by
external environmental loads as well as internal actuation loads,

INTRODUCTION

The concept of "smart" or adaptive materials/structures involves host structures
with either embedded or surface-mounted sensors, actuators and associated electronic
hardware, which provide the structure with the capability to sense external stimuli and to
adaptively respond to them. For example, distributed networks of sensors and actuators
may be used for sensing and actively damping vibrations in large flexible space structures
through the use of closed-loop control algorithms. Commonly used "active" materials for
combined sensing/actuation capabilities include piezoelectric, electrostrictive,
magnetostrictive, magneto-relaxor, and shape-memory alloy materials. Fiber-optic devices
can function as sensors, but not as actuators. Conversely, electro-rheological materials
are primarily useful for actuation functions, rather than sensing functions. Detailed
discussion of examples and capabilities of these materials is beyond the scope of this
paper. Instead, the focus is on the mechanics of their interactions with the host, in
particular, interactions of embedded devices with the surrounding host.

The embedded instrumentation and sensor/actuator devices act like
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heterogeneities within the host structure, and inevitably perturb the local values of the
field variables being sensed/controlled. The magnitude of this perturbation is a measure
of the obtrusivity of the embedded device. Another consequence of the device obtrusivity
is the possibility of nucleating damage in the device, or in the host, or at the interface,
due to stress concentrations under external structural loads and/or under internal
actuation loads. Effective control and reliability assessment of adaptive structures is
therefore facilitated if explicit relationships can be developed to account for the
mechanical interactions between the host and the embedded sensor/actuator inclusions.

The problem of quantifying the interactions essentially involves solving coupled
electro-mechanical, magneto-mechanical, opto-mechanical or thermo-mechanical
boundary value problems in heterogeneous domains, depending on the type of sensor and
actuator device utilized. There have been numerous studies in the literature for modeling
the interactions between sensor/actuator devices and host structures in adaptive structures
of special geometries. For example, laminated assemblies of piezo-electric wafers/films
in composite plates/beams have been analyzed by simple beam models [1], classical
laminated plate theories [2], and small-deformation as well as large-deformation one-
dimensional eigen-function approximations [3,4]. Embedded cylindrical devices such as
fiber-optic sensors have been analyzed using displacement [5] and stress-function [6]
formulations. Finite element formulations have also been developed for solving the
coupled boundary value problems in adaptive structures with complex geometries [7-9].

This paper illustrates the role of closed-form eigenstrain methods based on
Eshelby’s equivalent inclusion eigenstrain techniques [10], for quantifying the mechanical
interactions in a sample Euler-Bernoulli beam with embedded distributions of
piezoelectrical sensor/actuator micro-devices. In the present context, the term "micro-
device" implies that the size of the embedded device is atleast an order of magnitude
smaller than the size of the host structure and the spacing between neighboring devices.
The influence of these actuators on the internal energy of the adaptive beam is
investigated analytically. The internal energy term is important when investigating the
dynamic characteristics of the beam. Finally, expressions are developed for the strain
concentrations in the host, due to the presence of the embedded sensor/actuator micro-
devices. This information is crucial for assessing the impact of the embedded devices on
the reliability of the host structure.

PROBLEM STATEMENT

The application of the eigenstrain solution technique to "smart" structures is
illustrated in this paper through the simple example of a simply supported slender beam.
As shown schematically in Figure 1, two rows of uniformly spaced micro-devices are
embedded in the beam, symmetrically about the neutral plane of the beam. Each row
of devices is excited alternately, in order to control the vibrational characteristics of the
beam. As the beam flexes upwards, the devices in the upper row act as sensors and their
outputs are used in a closed-loop feedback circuit to actuate the lower row of devices.
The actuation strain is assumed to be positive in sign. During the next half cycle, when
the beam flexes downwards, the roles of the two rows of devices are reversed. The
influence of the devices on the vibrational characteristics is investigated analytically by
modeling the mechanical interactions between each device and the host. The aim is to
generate the electro-mechanical interaction information, necessary for combining the
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device response with that of the host beam, in an integrated dynamical equation of the
adaptive structure.

Several simplifying assumptions are made in this approximate analytical study.
Euler-Bernoulli beam theory is assumed to apply. Each embedded micro-device is
assumed to be a piezoelectric cylinder of elliptical cross-section, whose polarization axis
is oriented along the length of the beam. The length scale of each device is limited to
atleast an order of magnitude less than the beam. Hence, the bending strain is assumed
to be approximately uniform over the length scale of the device. This approximation
greatly simplifies the eigenstrain solution and is used in this paper for illustrative purposes
only. A more rigorous analysis will be required for more accurate results, and is deferred
to a future paper. Further, each device is assumed to be embedded far enough below the
free surface of the beam such that Eshelby’s eigenstrain solution for infinite spaces is
applicable. Finally, the distance between neighboring devices is assumed to be large
enough to prevent mutual interactions. Thus, this solution is only valid for dilute
distributions of micro-devices.

As a result of the assumptions presented above, the micro-devices are
approximated to act like elastic heterogeneities embedded in an infinite-dimensional host
structure. Perfect bonding is assumed at the interfaces. The sensor/actuator material is
assumed to be PZT-5H, and the host material is assumed to be ALPLEX plastic. All
materials are approximated to be linear and mechanically isotropic. The linearizing
assumption limits the validity of this approximate analysis to small excitation voltages and
small deformations. The assumption of mechanical isotropy is an acceptable
approximation for most PZT materials.

ANALYSIS

Eshelby’s classical equivalent-inclusion technique [10] is applied to obtain the
elastic interaction fields, both in the device and in the host, under external applied loads
and under internal actuation loads. External loads are handled through Eshelby’s
fictitious eigenstrain technique. Internal actuation loads are treated as a real eigenstrains
and are obtained from the linearized, iséthermal, coupled electro-mechanical constitutive
models given below. The difference between PZT sensors and actuators in the present
analytical context is that the sensor only has a fictitious eigenstrain due to external loads,
while the actuator has both fictitious and real eigenstrains.

The linearized, isothermal, coupled electro-mechanical constitutive model is [11]:
d=5Se-A"E (1)

D=hé+ekE

where # is the total strain vector including mechanical as well as electro-mechanical
contributions, @ is the mechanical stress vector, E is the electrical field vector, D

is the electrical displacement vector. S is the mechanical compliance tensor (assumed
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to be isotropic in this approximate analysis), h' is the piezoelectric coupling tensor
indicating the stress caused by completely constrained excitation of the PZT material
under a unit applied electrical field, e is the dielectric tensor for the PZT material.

Arrows over a quantity are used to denote vector quantities, while an underscore is used
to denote tensor quantities. Clearly, only the mechanical portion of this constitutive
model applies to the ALPLEX host material.

Eshelby’s method [10] is based upon postulating an equivalent inclusion with a
fictitious eigenstrain which has the same stress field as the real heterogeneity, under both
external loads and internal actuation strains. Thus, in the heterogeneity:

g% + g/ = CD (8° + g - ér) (2)
=CH (8 +¥& - @)

where ¢* = 27 + ¢f

C is the material stiffness tensor; superscripts D and H on the stiffness indicate the

PZT device and the ALPLEX host, respectively; superscripts o, ’, r, f and * on the stress
and strain terms indicate applied far-field value, perturbation due to the presence of the
heterogeneity, real actuation eigenstrains, fictitious eigenstrains due to external loading,
and total eigenstrains, respectively.

The real actuation eigenstrain is obtained from Equation (1) as:

@-=dTE (3)
where dT =g AT

—~ 0 _ 5
A T A

~ , s -

d" represents the free-expansion of the piezoelectric actuator for a unit applied electric

field.
The total eigenstrain is now related to the disturbance strain by Eshelby’s strain
concentration tensor SF:

4
¥=9F2 =gF (# + &) @

Eshelby’s strain concentration tensor can be computed for infinite spaces by using Kelvin’s

fundamental three-dimensional elasticity result for point loads [12]; and for half-spaces

by using appropriate Green’s functions [12]. Explicit forms for Eshelby’s tensor are

readily available in the literature for embedded isotropic heterogeneities of ellipsoidal

geometries. Solutions for anisotropic cases may be obtained numerically [12].
Substituting Equation (4) in Equation (2), we obtain:

5
.CD (eu +£E‘éo _Er) =.C'H (30 +£B‘éo _éf_ér) ()
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Equation (5) can now be solved for the unknown fictitious eigenstrain 2f in

terms of the applied external bending strain €° and the real actuation eigenstrain " .

This completes the solution for the total stress and strain fields within the micro-device,
which can now be determined from Equation (2). If the applied strain is uniform, so is
the fictitious eigenstrain. Nonuniform applied strains can be approximated by a
polynomial series which yields a series solution for the fictitious eigenstrain [12). In the
present problem, the far-field applied strain is assumed, as a first order approximation,
to be uniform over the length scale of each embedded micro-device, in view of the
simplifying assumptions stated in the previous section.

The stress and strain fields outside the device, in the surrounding host structure
are more difficult to determine by Eshelby’s technique. Fortunately, the exterior field is
not required when computing the mechanica! energy of the system, due to the actuation.
The mechanical energy contributes to the internal energy of the system, and needs to be
computed when using an energy-based approach for analysing the system dynamics. For
instance, under an imposed displacement field, the internal energy of the system can be
written in terms of the mechanical and electrical energies as:

_— T 1.F #on (6)
U= 3 fva ¢dv+ 2 fvE D av
Substituting Equation (1) in Equation (6):
- T d far .
U-2IV§ CEdV-l-zfvE e Edv (7
= Umcb * Uelactr

The mechanical energy term is the focus of our interest in this paper, and results from
(i) the uniform flexural field of the beam, (ii) the passive perturbation of the bending
field due to the presence of the micro-devices, and (iii) the actuation field of the active
micro-devices. After some manipulations (which are omitted here for brevity):

8
Um,,=%fvé°"c"é°dv+%fﬂé*’cﬂsﬁ‘é'dv ®)

The first term in Equation (8) is evaluated by integrating the uniform bending strain
energy density throughout the domain V of the beam. The second term represents energy
due to the imaginary and real eigenstrains, and requires evaluation only over the domain
0 of the microdevices. Hence, the exterior solutions for the real and fictitious eigenstrain
problems are not required in this study. Equation (8) is expanded further for clarity, as
follows:

2Upecn = fvé""c"é'o dv + fa @’ cH SEEf av + ©)

f Er"_cﬂsxer dV+férf_C"’Sxéde+f€frC"SE€’ av
Q Q a
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The first term in Equation (9) represents the energy of the homogeneous applied bending
field. The second term is the only one dependant on the fictitious eigenstrain, which is
a function of the applied bending field. The last three terms are the only ones dependent
on the applied actuation eigenstrain.

In order to perform the integrations in Equation (9), all that remains now is to
assume explicit representations for the applied flexural strain field, and the actuation
eigenstrain. For example, in the Rayleigh scheme for estimating the natural frequency
of conservative systems, an approxinmate displacement field can be assumed. In this
example, the approximate bending field is assumed to be harmonic in time and sinusoidal
in space:

w=Y a,Sine,t Sin ﬂg—' (19)
n

where the y axis is oriented along the length of the beam, w is the transverse
displacement in the z direction, @, and a, are the natural frequency and amplitude,
respectively, of the n™ mode, L is the length of the beam, and t is time. Only the
fundamental mode (n=1) is of interest in this study. Thus the only non-zero term in the

bending strain field 2° is €5 , and is given as:

0 n? ; N (11)
€ = 2 —Eal Slﬂmlt Sln—é—’

where, z is the distance of the microdevice from the neutral axis of the beam. The only
non-zero component of the actuation voltage vector is now E,. This term is now assumed
to be proportional to the output of the sensory devices, and hence, to the bending
deformations. Thus E, is written as: :

(12)

E, = E; Sinw,t sin"—z’

where the amplitude E, is assumed to be proportional to the amplitude a, of the
fundamental vibrational mode of the beam:

(13)

E; =K a,

The non-zero terms of the actuation strain vector are now written as:

(14)

Equations (10-14) are used in Equation (9) to compute the mechanical energy in the
system. The maximum energy during the cycle is of particular interest, for example,
either in the Rayleigh scheme for estimating the fundamental natural frequency of the
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homogeneous problem, or when investigating active instability suppression in slender
structural members under compressive loading. Sample results, for maximum mechanical
‘energy in the adaptive beam structure, are presented in the next section.

Finally, the strain concentrations caused by the actuator microdevices in the device
and in the host are of great interest for evaluating the reliability of the "smart" system.
The strain field in the device is obtained from Equation (2). Evaluation of the strain field
in the host generally requires knowledge of the exterior solution for the eigenstrain
problem. However, the strain and stress concentrations in the host are usually at the
interface with the device and can be evaluated by superposing the interior solution with
the appropriate jump functions across the interface[10]:

: (15)

ext Eint * Ae

where subscripts ext and int represent the solutions immediately outside and inside the

interface, respectively. A€ indicates the strain jump function which is available in the

literature for ellipsoidal heterogeneities [10]. Sample strain concentration plots for
combined external bending and internal actuation loads are presented in the next section.

RESULTS AND DISCUSSIONS

The material properties assumed in this analysis for the PZT-5H sensor/actuator
device and for the ALPLEX host are listed in Table 1. The piezoelectric coupling tensor
dT is obviously relevant only for the device material. The dielectric properties ¢ are not
of interest in the present study.

Figure 2 shows the increase in the mechanical energy as a function of the
excitation voltage for different numbers of actuators. The actuators are assumed to be
evenly spaced along the y direction. For convenience, the mechanical energy is
normalized with respect to that for zero electrical excitation. The voltage amplitude E,’
is represented by the proportionality factor K (in V/m/m) of Equation (13). The
increase in the mechanical energy term is a measure of the elastic stiffening of the beam
due to the actuation loads. This information is important when analysing the structural
dynamics and/or stability. Figure 3 illustrates the dependence of this stiffening effect on
the Young’s modulus of the host material. The elastic stiffness of the host material has
been normalized with respect to the Young’s modulus of the device material, and ranges
from epoxy properties to steel properties, in this graph.

The strain concentration factors in the host as a result of the far-field bending and
the actuation loads, are shown in figure 4, as a function of 6. As an example, the
actuation strain is assumed to be equal to the bending strain. The strain concentration
factors are obtained by normalizing the principal strain values in the host (at the interface

with the device) with respect to the applied bending strain €5 . The maximum strain

concentration is greater than 2.0, and is found to occur approximately at 8=10°, for the
combined load state considerd. The plot will be different for different combined load
states.
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CONCLUSIONS

This study has presented a unified approach, based on Eshelby’s technique, for
addressing the interaction mechanics of microdevices embedded in an adaptive structure.
This interaction information is of critical importance in active vibration and/or instability
suppression applications. This technique also gives simultaneous information of the stress
and strain concentrations in the host due to the obtrusivity of the sensor/actuator
microdevice. Such obtrusivity information is important for designing reliable smart
structures.
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E v d,, d, di6
(GPa) (C/N) #1e-12|(C/N) ¢ 1e-12 [(C/N) # 1e-12

PZT-5H 64 0.39 274 593 741

ALPLEX 3.5 0.35 - — —

Table 1. Electromechanical Properties of Device and Host Materials.
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Figure 2. Normalized Mechanical Energy as a function of Normalized Excitation Voltage
(V/m/m) for different device densities (n = number of active devices).
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