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In this paper, residual vibration of a servomotor driven rotating flexible beam is studied. The
beam is modeled as an Euler-Bernoulli beam; it is rotated by a servomotor using triangular
ve1001ty profile (bang-bang trajectory). Analytical solution is also obtained by using Fourier
series expansion of the acceleration of the rotating beam. Residual vibration amplltudes de-
pend on the beam tip position at the end of the rotation which is the function of rise time
which is the time to complete the rotation. It is found that if the rise time is the odd multiple
of the beam period 1, 3, 5 ..., residual vibration amplitudes are maximized. Residual vibra-
tion amplitude spectrum show that for rise time to period ratios from 1.5 to 2.5, residual vi-
bration amplitudes are lowered to less than 3% of the maximum residual vibration amplitude
obtained for rise time equal to the first natural period of the beam.

1. Introduction

Demand for high performance robotic systems quantified by high speed operation, high end-
position accuracy and lower energy consumption has triggered a vigorous research in various multi-
disciplinary areas, such as design and control of lightweight flexible robot arm. Flexible manipula-
tors, although having some inherent advantageous over conventional rigid robots, have posed more
stringent requirements on the control system design, such as accurate end point sensing and fast
suppression of transient vibration during rapid arm movements.

Point to point position control of a flexible beam is studied analytically and experimentally’~.
Equations for a rotating Timoshenko beam are developed for pinned-free and clamped-free bound-
ary conditions’. Dynamic modelling and optimal control of a rotating Euler-Bernoulli beam is stud-
ied*. Main objective of the paper was to control the vibration through force feedback control. Con-
dition of a slewing beam using high speed camera system is studied’. Results show that the natural
frequency of the rotating beam is between the natural frequencies of fixed-free and free-free beam.
Among many®" are also worth to mention which are related to a rotating flexible beam. A residual
vibration spectrum for a rotating flexible beam is studied'®. In this study cycloidal rise function is
used to rotate the beam. Closed loop solution is obtained. Results show that, for frequency ratios of
2,3,4 ... residual V1brat10n amplitudes becomes zero.

Shina and Brennan'* considered two methods for controlling the residual vibrations of a trans-
lating or rotating Euler-Bernoulli cantilever beam. Although a beam has an infinite number of vi-
bration modes, when it simply changes its position by translation or rotation the first mode is the
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main contributor to the total response. Thus, the problem can be reduced to the base acceleration
excitation of a single-degree-of-freedom system. Two simple methods are suggested for suppressing
the residual vibration of such a system without considering any control algorithms

In this study, servomotor driven flexible beam is considered. Triangular velocity profile
(bang-bang trajectory) is used to rotate the beam. Angular acceleration of the beam is approximated
by Fourier series and analytic solution is obtained. Residual vibration amplitudes depend on the
ratio of rise time to the beam vibration period. For ratios of 1, 3, 5, ... residual vibration amplitudes
are maximized. It is possible to minimize residual vibration by choosing appropriate ratio of rise
time to beam vibration period.

2. Formulation

2.1 Equation of a Rotating Beam
Fig. 1 shows a rotating flexible beam. OXY is an inertial frame, Oxy is a rotating frame. @ isa
rotation angle, y is the beam deflection. m is the unit mass of the beam per length.
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Figure 1. Rotating flexible beam model.
The position vector of m with respect to the rotating coordinates is
F=xi+yj. O @

If 7 is derived twice with respect to time

F=(%-290-y0-x6°) +(5+2x0+x0- y6*)7 . Q)
Acceleration of mass m in the j direction will be

j3+2x5'+xé—y92. 3)

Longitudinal vibration is ignored then x = 0, also nonlinear term y#” is neglected. Inertial load on
the unit mass m of the flexible beam will be

p(x) =-m(3 +x6). )

When this inertial load is used and EI is assumed constant then Euler-Bernoulli equation of the
beam will be
4

EI ‘;xy =—m(i+x6). (5)
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The governing equation of the motion will be
EL + mp=-mx0 . (6)
The mode summation method is assumed for the solution which is

Y0u1) = 34 (g, 0. ™

If the orthogonality condition is used and viscous damping is assumed, equation for the generalized
coordinate g; is

. : r .
4, +2w,q,+0lq, = 290 (8)

Here I, is defined as mode participation factor which is

1
T, =-m [xg, (x)dx )
0
M, is defined as generalized mass which is
I
M, =m [§ (x)dx. (10)
1]

State space form of the differential equation (8) can be given as

] [0 N LN S i
5| |~e? -2%e,|x,| | /M, - 0B

2.2 Servomotor Motion

Flexible beam is rotated by a servomotor. Velocity profile is assumed as triangular which is
also called bang-bang trajectory. Triangular velocity profile can be given as

60)=Om;  0<i<l 12)
1 2
66) =26, —20max, %’srsr,. (13)

r

Here Qm is the maximum angular velocity, t; is the rise time. If rise time t, and rotation angle 6 is
given, angular velocity and angular acceleration of the rotation can be calculated as

.20
g, =—mx (14)
r?’
g, = g<ile (15)
‘ 2
g, =P Lopoy (16)
t 2
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2.3 Analytic Solution

Angular acceleration of the beam rotation for triangular velocity profile is a rectangular wave
which can be approximated by a Fourier series as

0(t)=6.__ i{sina)rr+%sin3m,r+%sin$co,H-—--]. (17)
/1

Only first three terms are used. @, =27/¢, is the fundamental frequency of the Fourier series which
is also the rise frequency of the beam. Equation (8) can be written again as

L if . ;
g, +24w,q, + 0lq, = —'*(GM i] sinwra‘+lsm3(:),e‘+lsm5w,t 4ot (18)
M, r 3 5
Solution of the Eq. (18) is
g, = Xoe ™ sin(@yt +4))+ Y A, sin(@,-4,). (19)

n=1,3,5

@, =,/1-¢? is the damped natural frequency of the beam and @, = n®, . Using initial condi-
tions of ¢,(0)=0 andg,(0)=0, X, and @, will be obtained as

D A,sing,
¢0 — tan—]_ é' n=1375 1 . (20)
.
~— ) A,sing, ——— ¥ 4w cosg,
@y n;,s @y nﬂ%,j
2 ;a) 1 3 2
X, = [ ZA,, sinqﬁn] +[——" Z 4, sing, ——ZA,,&J,, cos;ﬁnJ ) (21
n=135 @Dy n=13,5 @y n=1
Here
A
2
now:
4,= ' . 22)
V(m = n) +(2¢mn)?
o 2¢mn
4, =tan™ 2" 23)
(m—n)
‘4 =mT=m2—ﬂ-. (24)
aF
A: - __r_‘igmax (25)
M x
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3. Simulation

For the simulation steel beam is used. Properties of the steel beam are; elasticity modulus
E=207 GPa, mass density p =7700 kg/m’, length /=40 cm, width »=24 mm, thickness #=0.6 mm.

Fig. 2 and 3 show the numerical solution of Eq. (10) for rise time t, =2.2T and ¢, =3T, respec-
tively. The period of the beam for the first natural frequency is 7 = 0.32s (@, =19.73 Hz). Damp-
ing ratio is assumed as ¢ = 0.02. During the rotation, beam is moving under inertial load, when the
rotation stops the deflection of the beam at this moment become an initial displacement for the
beam’s residual vibration. As can be seen from the Fig. 2, for ¢, =2.2T =0.70s, beam tip dis-
placement is very small that is why residual vibration amplitudes of the beam are small. In Fig. 3,
rise time is 3T which is 0.96 s. Beam deflection at 0.96 s is bigger than the one for 2.2T that is why
residual vibration amplitudes are high.

t=2.2T=0.70 s
0.04 ! ; ; ! !

0
Time [s]

Figure 2. Rotating beam vibration for t=2.2T.
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Figure 3. Rotating beam vibration for t=3T.




16" International Congress on Sound and Vibration, Krakéw, Poland, 5-9 July 2009

Fig. 4 and 5 show beam vibration during the rotation of the beam for ¢, = 2.2T and ¢, =37,

respectively. Solid line is for analytical solution, dashed line is for numerical solution which is
given in Eq. (18). Analytic solution, which uses three term Fourier series expansion of the accelera-
tion of the beam predicts well the motion of the beam. Depending on the rise time, beam tip ampli-

tude at 7 =¢, is changing.
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Figure 4. Rotational motion of the beam during rise time, t,=2.2T.
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Figure 5. Rotational motion of the beam during rise time, t=3T.

Fig. 6 shows this change. Values are scaled with respect to the amplitude at m=1. At m=1, 3,
and 5 maximum residual vibration amplitudes are making peaks. Between 1.5 < m < 2.5 maximum
vibration amplitude values are less than 3% of the amplitude for m=1. Between 3.5 <m <4.5 re-
sidual vibration amplitudes are less than 0.1% of the maximum vibration amplitude for m=1. These
values are independent of the beam natural frequency that is why these results will not change for
different beams.
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Figure 6. Residual vibration maximum amplitude spectrum.

4. CONCLUSION

In this study rotating flexible beam equations are derived. Assuming triangular velocity pro-
file for the rotation, analytical and numerical solutions are obtained. Rotational acceleration of the
beam is approximated by three term Fourier series expansion. Residual vibration maximum ampli-
tude spectrum show that for the ratio of rise time to beam natural period values of 1, 3, 5, ... maxi-
mum residual vibration amplitudes are maximized, for ratio values of 1.5 to 2.5, maximum residual
vibration amplitudes are less than 3% of the value obtained for ratio=1. For ratio values of 3.5 to 4.5
maximum residual vibration amplitudes are less than 0.1% of the value obtained for ratio=1. This
study shows that It is possible to minimize the residual vibration of the rotating beam by selecting
proper rise time.
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