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Abstract

In this paper experimental study of plastic deformation of aluminum frusta when reinverted
is presented. Effects of changing the angle of frustum as well as frustum wall thickness on
the absorbed energy are investigated. The details of the experimental plastic inversion and
reinversion are given. Obtained results show that it is possible to use the inverted aluminum
frusta several times, thus they are reusable collapsible absorbers.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The collapsible energy absorber is the device that converts the kinetic energy of
a moving body into permanent plastic deformation in deformable solids. This conver-
sion process depends on the shape of the absorber, material used, absorber arrange-
ment, loading rate, loading pattern, and so on [1].

Energy absorbers are used mainly as crash protection devices. They are installed
in critical areas, like automobile bumpers, to minimize the deceleration pulse during
impact events. Knowing that the kinetic energy is constant, the function of the
absorption device is to lower the impact force, and hence extend the dissipation
period. Collapsible absorbers can be used inside automobile bumpers, along road
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barriers, beneath armory surfaces, under lifts, surrounding nuclear reactors and as
crash retards at harbors. |

Collapsible energy absorbers can take several common shapes, such as circular
tubes [2], multicorner columns [3], struts [4], frusta [4], and honeycomb cells [5].
Because of their common occurrence, axisymmetrical and circular shapes provide
perhaps the widest range of all choices for use as absorbing elements, in addition
to their favorable plastic behavior under axial forces. The selected absorber in this
paper is capped-end aluminum frusta subjected to inversion load. Frusta are
employed over a wide range of applications such as the nose cones of missiles
and aircraft.

2. Thin-walled frusta

Thin-walled absorbers in the form of thin tubes have been of particular interest
since the pioneering works of Alexander [2] in crushing thin tubes axially. Since
then researchers have came up with different crushing mechanisms including, tube
splitting [6], tube inversion [7], lateral indentation [8], tube nosing [9] and lateral
flattening [10]. The study of deformation of tubular energy absorbers falls into two
main categories, lateral, and axial loading. However, in comparing lateral crushing
mode with axial, the specific absorption energy in axial mode is ten times that of
the same tube when compressed laterally between flat plates. Investigations often
lead to account for geometrical changes, interactions between modes of collapse, as
well as strain hardening and strain rate effects.

Frustum is a truncated circular cone that can be seen in Fig. 1. One of the first
studies in using frusta as energy absorbers was carried out by Postlethwaite and
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Fig. 1. Schematic drawing of the frustum.
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Mills in 1970 [4]. They predicted the mean crushing force for concertina (symmetric)
mode of deformation for frusta made of mild steel.

Mamalis and Johnson [11] investigated experimentally the crumbling of aluminum
frusta when subjected to axial compression load under quasi-static conditions. Mam-
alis et al. [12] extended their experimental study to include mild steel at elevated
strain rates. Mamalis et al. [13] proposed an extensible collapse analysis for pre-
dicting the mean crushing load for frusta crushed axially into concertina mode of
deformation. Also, Mamalis et al. [14] developed a theoretical model for the average
crushing force for frusta deformed axially into diamond (asymmetric) mode of defor-
mation. In another paper, Mamalis et al. [15] modeled the progressive extensible
collapse of frusta and gave a theoretical model that depicts the changes in peaks and
troughs of the experimental load-displacement curves. Other studies related to axial
crushing of frusta include crushing of PVC frusta of square cross-section [16], com-
posite frusta [17,18], constrained frusta [19] and others [20,21].

All of the above studies deal with the axial crushing of frusta, however, Alghamdi
[22] proposed inversion of frusta as an innovative mechanism of deformation. Details
of the inversion of frusta have been investigated by Aljawi and Alghamdi [23] and
deformation modes have been modeled using ABAQUS under static [24] and dynamic
[25] loadings.

In this paper the inverted frusta are used again as energy absorbers in an attempt
to maximize the energy absorbed per unit mass that can be considered as an accept-
able measure of the success of an absorber. Although inversion of frustum is a plastic
deformation process, it produces an inverted frustum with a slight permanent defor-
mation that can be used again and again.

3. Results and discussion

A number of frusta, featuring different thicknesses and angles were inverted and
reinverted up to failure. The program involved the use of 15 different sizes of alumi-
num frusta (ten different angles and five different thicknesses) in reinversion tests.
Tests were conducted using 10-ton Instron Universal Testing Machine (UTM). A
special jig for inversion was manufactured and utilized. The jig consisted of an
inversion rod (to be held by the upper jaw of the UTM) and a base cylinder working
as a seat for the frustum while resting on the lower jaw. Table 1 lists the dimensions
of the frusta used in the reinversion tests where D is the large diameter, d is the
small diameter, & is the angle of the frustum, 4 is the height, m is the mass and ¢
is the thickness, see Fig. 1.

The inversion tests were carried out first for 46 capped-end aluminum frusta made
by a spinning process. Fig. 2 shows a photograph of the specimens after the first
inversion, details of the inversion process can be found in [25].

Selected specimens featuring different angles and thicknesses were chosen for
reinversion tests. The program started by testing specimens 30102-30302 that have
a constant angle (o = 30°) but different thicknesses, varying from 1.01 to 3.05 mm.
Then specimens with different angles were reinverted. Table 2 lists the details of
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Fig. 2. Spun aluminum specimens after the first inversion.

the experimental work that includes the inversion stage, energy absorbed, measured
by the area under force-displacement curve, and specific energy.

Reinversion load-displacement curves are similar to each other and good represen-
tative examples are shown in Fig. 3 for Specimen 50152. This specimen sustains
four inversions. In the first inversion, the frustum passes through a number of stages.
The load rises from the origin to the instability point. Up to 90% of this point the
deformation is recoverable, i.e., elastic and beyond which plastic behavior sets in.
The second stage is the zone of incubation, or the zone of inversion preparation,
where an extensible mode of deformation is observed and the load decreases to a
minimum value. Inversion then proceeds towards the larger (lower) end of the frus-
tum, with a linear increase in the load. The increase in the inversion force is attributed
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Fig. 3. The first 4 inversion curves for specimen 50152.

to the progressive increase in the volume of the deformation zone with increasing
diameter/thickness ratio. The second maximum point in the solid curve signals the
termination of the inversion zone and the start of bending of the free large end of
the frustum. Thus the inversion mode changes into flattening mode where the unde-
formed lower part of the frustum has the shape of Belleville spring. The free end
of the frustum is flattened parallel to the shoulder of the jig base. The energy
absorbed recorded experimentally through first inversion is 107.7 J, whereas the
calculated specific energy is 5.456 J/g for this specimen.

In the second inversion, the specimen is removed from the holder and upturned
upside down so that the small capped-end faces the inversion rod. The second inver-
sion is similar to the first one except the delay in the maximum instability point due
to the massive plastic deformation applied to the upper capped-end of the frustum
in the first inversion (Fig. 3). The curve follows, to some extent, the first inversion
curve with total absorbed energy equal to 111.3 J, and specific energy equal to 5.639
J/g (Table 2). :

The third inversion curve is very similar to the first one but with higher instability
point and larger absorbed energy, 136.2 J, and specific energy, 6.902 J/g. The
increase in the absorbed energy is a result of the cold-work strengthening done to
the specimen in the previous inversions. In the fourth inversion, the test was stopped
because the lower end of the frustum became so deformed that it passed through
the holder. Fig. 4 shows photographs of Specimen 55152 after the second and the
third inversions, and final shapes of Specimens 30102, 30152, 30202, 30252 and
30302.

It is very clear that the absorbed energy increases by the increase in the number
of inversions (N), thus Figs. 5 and 6 are given to show the effect of angle of frustum
(o) and wall thickness (7) on the number of inversions (N), respectively. It can be
seen from Fig. 5 that the number of inversions decreases with the increase in the
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(b)

Fig. 4. Specimens after inversion. a) Specimen 55152 after the second inversion, b) Specimen 55152
after the third inversion, c¢) Final shapes of specimens 30102, 30152, 30202, 30252 and 30302.

angle of frustum. In other words, the possibility of inversion decreases due to the
difficulty of inversion process with large angle. For o¢ = 90° frustum becomes a tube
and inversion of a tube is limited to one inversion per tube [7]. At the other extreme,
frusta with small angles are very close to Belleville springs where the elastic response
dominates the inversion process, thus, theoretically, it can be inverted an infinite
number of times. For the thickness change, it seems to be that there is some optimum
thickness, for the given geometry, at which the number of inversions is maximum.
This value is approximately = 1.5 mm.

The effects of the angle of frustum and wall thickness on the total absorbed energy
are shown in Figs. 7 and 8. Generally, one can say that the total absorbed energy
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Fig. 6. Relation Between number of inversions (N) and frustum wall thickness (7).
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Fig. 7. Effect of wall thickness on energy absorbed.
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Fig. 8. Effect of angle of frustum on energy absorbed.
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increases with the increase in wall thickness. This is a more accurate measure than
the number of inversions (N) that measures the reusability of the absorber. The effect
of the angle is very clear. As expected, the accumulated absorbed energy increases
with the increase in the angle of frustum, and the absorbed energy attains some
maximum value at or = 60°.

Fig. 9 illustrates a comparison between the reinversion of frusta with other modes
of deformation such as inversion and crushing. The plot gives the experimental spe-
cific energy vs the angle of frustum for the three modes of deformation. The circle
points depict the inversion mode as reported by Aljawi et al. [25], the triangle points
present the crushing mode as reported by Alghamdi et al. [26], the square points
mimic the crushing mode, as predicted by El-Sobky et al. [19], and finally the star
points show the reinversion mode. It can be seen that absorbed energy in the reinver-
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Fig. 9. Absorbed energy density for crushing, inversion and reinversion.
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sion mode is much higher than the values in the other two modes. Again this is
attributed to the usability of the absorber several times, which means it is not dispos-
able after the first crushing.

4. Conclusions

Inversion of frusta is believed to be one of the best modes of deformation of
collapsible energy absorbers. In this paper, inverted frustum is being used several
times in an attempt to maximize the accumulated absorbed energy per unit mass.
Obtained results show that the absorbed energy can be as much as three times the
energy absorbed by crushing. This signals the possibility of using frusta several times
in inversion mode, and hence it is not disposable after the first time of usage like
crushing of tubes or frusta.
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