ABSTRACT .

The focus of this paper is to obtain the effective properties of
a I-3 piezocomposite consisting of an infinitely large isotropic
host with piczoceramic (PZT) cylinders embedded along the
thickness.  The clastic and electric fields inside PZT cylinders
are obtained using Green's function formulation. The Mori-
Tanaka method is used to predict the effective properties of the
1-3 composite including elastic, piezoelectric, and diclectric
constants, as functions of the PZT volume fraction.

1INTRODUCTION

The determination of the overall propertics is a classical
problem in micromechanics of heterogeneous material systems.
The theory of effective behavior of composite materials for
uncoupled propertics, for example of elastic solids (Mura, 1991),
is well developed.  However. effective properties for coupled
phenomena, for example piczoclectric composite materials, has
not been investigated in equal detail.  With the emerging
technology of smart structures it is important to understand the
effective behavior of piezocomposites as an important material
for smart structures.

Eshelby (1957) developed a unified approach 1o solve the
elastic problem of a single ellipsoidal heterogeneity in an infinite
isotropic elastic material based on imaginary cutting and welding
techniques which are called "cigenstrain techniques” or
transformation strain techniques. Kinoshita and Mura (1971)
obtained the elastic fields for anisotropic elastic materials.
Inhomogeneities made of piezoelectric materials are difficult to
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handle because, I)- the elastic fields are coupled with the
clectric fields, and 1I)- the piezoelectric material behaves
anisotropically for both elastic and electric fields. The coupled
electric and mechanical fields for a single inclusion in a
piezoelectric material have been derived for ellipsoidal
heterogencities (Wang, 1992) and for cylindrical heterogencities
(Benveniste, 1992).

The effective properties of piezoceramics have been studied by
Olson and Avellaneda (1992), Wang (1992), and Benveniste
(1992). Olson and Avellaneda (1992) obtained some of the
effective constants of isotropic polycrystals with piezoelectric
grains using effective medium approximation (EMA) and
generalized Hashin-Shtrikman bounds. However, Olson and
Avellaneda’s (1992) method is not suitable for high
concentration of voids in a material. In this paper we extend the
Mori-Tanaka method for elastic solids to piezoceramics and then
use the method to obtain the effective propertics of
piezoceramics. The single inclusion solution provided by Wang
(1992) is used to solve the auxiliary problems required in the
Mori-Tanaka homogenization scheme.

2-ELECTROELASTIC SINGLE INCLUSION PROBLEM

The linear coupled constitutive isothermal model for
piczoelectric materials, neglecting any magnetic effects, is given
by,
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electrical field, and the electrical displacement, respectively. Cy,
is the elastic stiffness matrix, hy is the piezoelectric stress
coupling matrix, and e; is the dielectric permittivity matrix.
Equation (1) can be written as,

D, are, the stress, the strain, the
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where B is defined as,

B -= (3)

L

Details of matrix B are given in the appendix for a transversely
isotropic material with axis 3, the piezoelectric polarization axis,
as the symmetry axis. For a cylindrical inclusion in an infinite
matrix, where the applied, far-field electric field is E° and strain

is € , the coupled electric and elastic fields are obtained using

the Green’s functions approach as (Wang, 1992)
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where subscripts 1 and o denote the fields inside and outside

(far-field) the inclusion, respectively. Tensor T is given in the
appendix for transversely isotropic materials and cylindrical

“)

inclusions. Vector [e E]" is defined as,
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Once the coupled elastic and electric fields are obtained, the
effective elastic, dielectric, and piezoelectric constants of the
piezoelectric material can be obtained using the Mori-Tanaka
homogenization scheme.

3-EFFECTIVE PROPERTIES BY MORI-TANAKA
METHOD

In this paper we use the equivalent inclusion average stress
(EIAS) method proposed by Benveniste (1987) for eclastic
materials. Benveniste reformulated the Mori-Tanaka method
using Eshelby’s celebrated concept of equivalent inclusion.
EIAS has been extended to piezoelectric ceramics (Jain, 1994),
and is utilized in this paper.
elastic constant (Cy), piezoelectric

The effective
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constants (Eéfk)' and dielectric constants (e,) of the
piezoelectric ceramics are defined as follows

<o = Cos <& - by <Ep ©)

= hiu-(eb_) + &, <Em>

where the symbol < > denotes the volume average of the
enclosed quantity. Equation (6) can be written in terms of an

effective piezo-moduli tensor B as

<g> = E <E>

<> -<E>
The overall average stress, strain, electric displacement, and
electric field quantities are defined as
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where o’ E;. , D! and E| are, respectively, the ave

ij?

stress, strain, electric displacement, and electric field in

inclusion. o°, €, D° and E° aretheconstantstress, st

electric displacement, and electric field, respectively, a
the boundary of the domain. Superscript m denoles i
respective average quantities in the matrix; v is the vol

fraction of the heterogeneities.

The determination of the effective piezo-moduli tensor B

requires expressions relating the average elastic and ¢
fields in the inclusions to the uniform applied elastic and el
fields on the boundary:
€ o
(2

-

where A is termed the concentration factor and is same as
T in Equation (4) if it is a single inclusion problem or
interaction among inclusions is neglected (called the di




e approximation). However, for many inclusions tensors A and T
“ are not the same and the determination of the concentration
& factor A is a difficult task. The Mori-Tanaka approximate
i (Benveniste, 1987) is stated as:
(&)
E

(2] -

Using Equations (8) through (11),(12) and (13). we obtain
_ concentration factor A as follows:

(13)

A =T[A-vI + v]" (14)
4 where I is the unit tensor and v, is the volume fraction of the
B inclusions.

Solving  Equations (6) through (12). we can obtain the
effective properties in terms of the concentration factor A as:

B=B" «v [(B' - B™A] (15)

Rhere superscripts m and 1 denote quantities for matrix and
inclusions, respectively.  Finally, using Equation (14) the

effective piczo-moduli tensor B are obtained in terms of tensor

Tas:

B™ + v [(B' - BMmT] [(1 -v)I + v, T1" (16)

This approximation provides reasonable predictions of the
effective properties for non-dilute concentration (Benveniste,
1987) since it simulates indirectly, the interaction among
£ inclusions.

4-RESULTS AND DISCUSSIONS

- Inthis section the Mori-Tanaka method is used to compute the
 effective properties of 1-3 piezocomposites. Figure (1) shows a
b schematic representation  of the 1-3 piezocomposite plate
onsisting of piezoceramic (PZTS) rods, poled along their axis,
ad embedded along the thickness direction of a Stycast plate.
The material properties used in this example (Avellaneda and
Swart. 1994} are given in Table ().

Figure (2) shows the change in moduli of elasticity E, (=E,)
~ (mnsverse) and E, (longitudinal) as functions of volume fraction
of the piczoceramic. The longitudinal modulus varies in a linear
fashion as predicted by rule-of-mixtures, while the transverse
modulus shows nonlinear behavior. Figures (3) and (4) present
the Poisson’s ratios and shear moduli as the volume fraction of
piezoceramic increases. The transverse shear modulus (G,,)
represents the lower bound for the piezoelectric problem,
analogous to Hashin’s CCA model (Mura, 1991) for the elastic
problem.  The longitudinal shear modulus G,, (=G;,) changes

sign at ¥V, = 0.6 because of the piezoelectric effect. The
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TABLE (I): MATERIAL PROPERTIES OF PZT5 AND
STYCAST.

m

Material PZIS Stvcast
S, 10" m¥/N) 16.4 108
S,,5(10" m¥/N) -5.74 -32
S,:5(10" m¥N) -7.22 -32
S3:5(10" m¥/N) 18.8 108
d,5(10"2 C/N) -171 0
dy(10" C/N) 374 0
ey'/e, 207 4

m

permittivity constants are displayed in Figure (5) as functions of
volume fraction of PZTS5. e,, shows linear behavior as predicted
by rule-of-mixtures, while e,, (=¢,,) behaves non-lineariy.
Finally, the enhancements of the overall strain coupling
constants (d) are shown in figure 6. The magnitude of d,, is

found to attain a maximum at V}r = 0.6, unlike the predictions

from the effective medium approximation (EMA) reported i the
literature (Avellaneda and Swart, 1994).
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6-APPENDIX
For wransversely isotropic material with axis 3 as the symmetry
axis, piezo-moduli tensor B can be written in the matrix form,

’c“ €C2Cy 0 0 0 0 0 &
C:C, C3 0 0 0 0 0 &
s Cs €3 0 0 0 O O &,

0, @ 901G, & D 0. % O
B={0 0 0 0C, 0 &, 0 ofAD
D' 9 Bi 0 B.C. 0 0 0
0 0 0 0hy O -aq, 0 O
0 “0°" 0K, 00 0 v, @
hy hy hy 0 0 0 0 O -g

Tensor T for transversely isotropic material and cylindrical
inclusions can be written as,

Ty T, Iy 00 0 4 0 T,
T v T 0 0 0 0 | D
o - I a9 0 0 0 0
D00 e O 0 0 T 19
Falo vonn 0E o 1y 0 o (A2
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details of tensor T are given as,
%
T, = - 2 (A3)
X T X
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where,
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X, = 2[Coen+(hDH + hihls + elCs  (A1S)

FIGURE (1): SCHEMATIC REPRESENTATION OF 1-3 PIEZOCOMPOSITE.
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FIGURE (2): MODULI OF ELASTICITY VERSUS PZT VOLUME FRACTION.
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FIGURE (3): POISSON'S RATIOS AS FUNCTIONS OF PZT VOLUME FRACTION.
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FIGURE (4): SHEAR MODULI VERSUS PZT VOLUME FRACTION.
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FIGURE (5): THE OVERALL PERMITTIVITY CONSTANTS AS FUNCTIONS OF PZT VOLUME FRACTION.
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FIGURE (6): EFFECTIVE STRAIN COEFFICIENTS VERSUS PZT VOLUME FRACTION.
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