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ABSTRACT

The dynamic response of an adaptive beam containing embedded mini-devices (sensors and
actuators) is investigated analytically and experimentally in this paper. The dynamic model is based
on Hamilton’s variational principle and the mechanical interactions between the beam and the devices
are modeled using Eshelby’s equivalent-inclusion method. The dynamic model is verified
experimentally, using a cantilever beam made of ALPLEX plastic as host material and piezoelectric
devices (PZT-5H) as active mini-devices for sensing and actuation. The experimental setup is outlined
and the analytical results are compared with the experimental ones. The capability of mini-actuators
to change the dynamic behavior of the adaptive beam is explored for the adaptive stiffening case.

KeyWords: adaptive structiires, eigenstrain techniques, adaptive stiffening

2. INTRODUCTION

Adaptive materials and intelligent systems have been the focus of researchers for quite
sometime. Adaptive structures have -been used in the area of active vibration control by many
researchers, see for example [Burke and Hubbard, 1987], [Tzou and Tseng, 1990], [Ha et al, 1992),
[Alghamdi and Dasgupta, 1993a). Piezoelectric materials have attracted significant attention for their
potential application as sensors and actuators for controlling the response of structures. Distributions
of sensors, actuators, and data processing capability are used to modify, tune, and control the response
of adaptive structures to sensed stimuli.

Numerous studies have modeled the interactions between devices and hosts in smart structures.
The response of adaptive structures with laminated assemblies of piezoelectric wafers/films in
composite beams have been analyzed by laminate analysis [Crawley and Lazarus, 1991], simple beam
models [Bailey and Hubbard, 1985], pin force models [Crawley and de Luis, 1987], large deformation
beam theory [Im and Atluri, 1989], and one-dimensional eigen-function approximations [Lin and
Rogers, 1992]. Variational methods have also been developed for solving the coupled boundary value
problems in adaptive structures. These include a strain energy method [Wang and Rogers, 1991],
finite element methods [Allik and Hughes, 1970], and Rayleigh Ritz methods [Hagood et al, 1990].

Most present-day adaptive structural systems consist of relatively large surface-mounted
"active" elements which can cause reliability problems due to high stress concentrations, poor
interfacial bonding, change in the boundary conditions, etc. These limitations can be partially
overcome by using mini-devices with less obtrusivity, and embedding them throughout the host to
achieve adequate control authority. However, embedding produces three-dimensional stress
interactions that are more difficult to model than those arising in surface-mounted devices.

Eshelby’s technique [Eshelby, 1957] offers a convenient method to model the mechanical
interactions in systems with embedded mini-devices [Dasgupta and Alghamdi, 1992]. Eshelby’s
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equivalent-inclusion method has been previously used by the authors to model the elastic interaction
between actuators/sensors and the host, by using appropriate Green’s functions. The authors have
developed analytical solutions for embedded mini-devices using eigenstrain techniques, see for
example [Dasgupta and Alghamdi, 1992], [Dasgupta and Alghamdi, 1993], and [Alghamdi and
Dasgupta, 1994].

The focus of the present paper is on the behavior of a beam with embedded mini-devices. The
devices are small compared to the characteristic dimensions of the host and the maximum volume
fraction of the devices is below 2 %. The equation of motion of the system is derived using a
generalized Hamilton’s principle. The change in the natural frequency of the structure due.to
harmonic excitation of the actuator is examined analytically.

Experimental verification of the analytical model is presented. Adaptivity of the beam is
illustrated through adaptive stiffening of the cantilever beam for position feedback control. The
authors have developed details of the analytical model in a previous paper [Alghamdi and Dasgupta,
1993b] for voltage driven electrodes, and have presented experimental data of the adaptive beam in
another paper [Alghamdi and Dasgupta, 1994]. In this paper the model for charge-driven electrodes
iéievcloped, and comparison between the analytical model and the experimental results is illustrated.

3. ANALYSIS

As shown schematically in Figure (1), two rows of uniformly spaced micro-devices are
embedded in the beam symmetrically about the neutral plane of the beam. One row is used as sensors
and the other as actuators. As the beam flexes, sensor outputs are used in a position-feedback circuit
to actuate the corresponding active devices (actuators) in the opposite row. The result is a stiffening
of theclloeam and an accompanying increase in the natural frequency o, if all losses in the system are
ignored.

In this study, each micro-device is approximated to act like elastic heterogeneities embedded
in a large host structure. Host and devices materials are approximated to be linear and mechanically
isotropic. All material properties are listed in Table (1). _

The variational principle is a generalized form of Hamilton’s principle, and may be written as
[Tiersten, 1967];

3 [Cf« W)y de=bd (1)

to

where the Lagrangian functional L is the difference between the kinetic energy and the electric
enthalpy. The work term, W, includes the work done by electrical charges imposed at the actuator
electrodes
The linear isothermal constitutive relation for piezoelectric material is given as:
E
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where O ; 4 is the stress tensor, € k1 1s the strain tensor, E, is the electrical field vector, D; is the

SPIE Vol. 2442/ 123



. : B 2, . g .
electrical displacement vector, C;j; is the mechanical stiffness tensor at constant electrical field,

€ijk is the piezoelectric stress coupling tensor, and € is the dielectric tensor at constant strain.

Thus, using the definition of electric enthalpy and substituting for the work term and taking
the variation one can get [Alghamdi and Dasgupta, 1993c]:

t "
Lo [ fv u;pdu; dv +f € ;5C;x10€,; AV - L € ;;€x1;0E, dv

€)

where v, is the displacement vector, p is the density, v is the volume of the beam, Q is the volume

of the devices, Q is the specified surface charge density, V is the electric potential, and A is the
electrode surface area of the devices. The integration domain in the above equation covers host,
sensors and actuators, and the structural effect of sensors and actuators on the structure is considered.
Also, the direct piezoelectric effect at sensors and actuators and the converse effect at actuators are
considered. .

Eshelby’s classical equivalent-inclusion technique is applied to obtain the elastic interaction
fields, both in the device and in the host, under external applied loads and under internal actuation
loads [Eshelby, 1957]. The internal actuation loads are treated as real eigenstrains. In the present
analytical context, sensors and actuators have fictitious eigenstrain due to external far-field loads and
real eigenstrain due to direct effect, while actuators have additional real eigenstrains due to the
converse effect of the actuation voltage. The real eigenstrain due to the direct effect are ignored in
this study.

Eshelby’s method is based upon postulating an equivalent-inclusion w1th a fictitious eigenstrain
which has the same stress field as the real heterogeneity, under both external loads and internal
actuation strains. Thus, in the heterogeneity:

0 / D 0 / o H 0 / *
O35 + G415 = Cijia (€x1 + €11 - €x1) = Cijg (€51 + €41 - €%) @

where € 5 =€ ij +€ f{-cj . Superscripts D and H on the stiffness indicate the device and the host,

respectively, and superscripts 0, /, r, f and * on the stress and strain terms indicate applied far-field
value, disturbance due to the presence of the heterogeneity, real actuation eigenstrains, fictitious
eigenstrains due to external loading, and total eigenstrains, respectively. Details of the eigenstrain
method can be found in [Dasgupta and Alghamdi, 1992].
The total strain inside the devices can be calculated using eigenstrain techniques [Dasgupta and
Alghamdi, 1994] as:
€y =€y + €y =efy + S1jk1€ k1 ®)

where Sy, is Eshelbey’s fourth-order strain concentration tensor [Eshelby, 1957].
The second term in Equation (2) can be written in terms of the eigenstrain [Alghamdi and
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Dasgupta, 1993c] as:
[ €i5Cijbder dv =
H * *
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where AC;,, = C - Cljwa -

Assuming an Euler-Bernoulli beam formulation for the host cantilever, an admissible
displacement function w in z-direction is assumed in accordance with the Rayleigh-Ritz technique:

(- w=[1—cos( )]r(t) (7)

where 1(t) is a generalized degree-of-freedom. For simplicity, only one degree-of-freedom is used in
this study. This is adequate for modeling the first vibrational mode.

The corresponding voltage in the sensor is assumed to be proportional to the strain at that
sensor

2
= - 8
E, 2(412)COS(21)V(C) ®

where V(t) is the generalized sensor degree-of-freedom.
Similarly, the electrical field at the actuator is assumed to be;

=

a

LA AT ©)
B ( = ) vV (¢t)

where V(1) is the generalized actuator degree-of-freedom. Substituting Equations (5) and (6) into
Equation (3) and allowing arbitrary variation of r(t) and V,(t), one obtains the following set of

equations for the system:

ME(t) + K, r(t) + C, V() =0 (10)

C, rlt) +.8, V,(t) =.q, (11)

where M, K, C, and S are the mass, stiffness, electromechnical coupling, and capacitance,
respectively, and q is the applied charges. Details of these terms can be found in [Dasgupta and
Alghamdi, 1994]. Subscripts a and s refer to actuator and sensor, respectively. In reality there is also
a structural or viscous damping term which has been ignored in Equation (10).
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In a charge-controlled system, V; =0, and the charge generated at sensors is proportional to
displacement r(t) and can be calculated as:

@ =L €5k €4 L(t) n; dA (12)

s

where A is the area of the sensors electrodes and n; is the unit outward normal vector. Typically
Equation (11) is used to relate the actuation voltage, V,, to deformation r(t).

In this study, we assume charge-driven system such that the charges applied to actuators are
proportional to the charges generated at the sensors,

g, = G g, r(t) (13)

where G is the gain.

For simplicity -of illustration in this paper, we assume only the first vibrational mode.
Substituting Equation (13) into Equation (11) and Equation (11) into Equation (10), the square of th%
first natural frequency can be written as:

-1 -1
0_')2 " Kp + G CaSa qS e CaSa Ca (14)

M

In the following section analytical results are compared with the experimental ones for different gains
G.

4. ADAPTIVE CANTILEVER BEAM

Figure (1) shows the specimen used in the test. Two rows of piezoceramic (PZT) devices are
embedded within the ALPLEX beam symmetrically about the beam midplane. The volume of each
device is 0.22% of the beam volume. These devices are grouped, for convenience, into four pairs,
shown by the dashed boxes in Figure (1). In the first two pairs, one device acts as a sensor, and the
other as an actuator. Both devices of the third pair act as actuators, and can be excited 180° out-of-
phase to excite a pure bending mode for characterizing the frequency response function [Alghamdi
and Dasgupta, 1994]. In the fourth pair, both devices act as sensors. Figure (2) illustrates theo
experimental setup. The symmetry in the locations of the sensor and actuator in each pair provides
certain advantages similar to collocated sensors and actuators, for distributed control strategies.

Sensor outputs from first and second pairs are amplified using two different charge amplifiers.
The output is then passed through a phase shifter and a low-pass frequency filter. A power amplifier
is used to amplify the signal before it goes to the actuators. Details of the experimental setup is given
in [Alghamdi, 1994].

5. RESULTS AND DISCUSSIONS
In this study only the first vibration mode is investigated. As discussed in Section 5, locating
the sensors of the active pairs symmetrically with respect to the actuator locations, provides a type of
distributed control. As a result, the history of the applied charges in each actuator is different, even
though the gain is constant. However, at any given time the field in each actuator is proportional to
its location along the y axis (see Figure (1)). This proportionality allows us to characterize the field
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histories in all the actuators, by just one parameter. In this study, the gain, G, is chosen as the
defining parameter.

Figure (3) represents the analytical and experimental free vibration responses of the beam due
to an initial manual displacement applied at the free end. The experimental time response shown
represents sensor voltage at pair 4, normalized by the value at t = 0. The solid line is the analytical
damped time response due to some assumed structural damping, with all devices passive (zero gain,
G = 0). The viscous damping assumed in the model is based on experimental observation. The
dashed line represents the experimental response with no actuators active (G = 0). It can be seen that
the analytical model agrees well with the experimental results and the predicted first natural frequency
is 23.35 Hz while the measured one is 24.4 Hz.

Figure (4) presents analytical and experimental responses for the adaptive beam with two active
devices (n = 2) at gain G = 38. Experimental response shows stiffening accompanied by some
additional damping because the applied charges tend to suppress the vibration. Damping due to
position feedback was reported in the literature (see for example [Fanson et al, 1989]). It is worth
mentioning at this point that the small change in the dynamic response is due to the small volume

 fraction of the devices which is only 0.44% for each pair. The calculated first natural frequency is
24.23 Hz and the experimental one is 25.3 Hz.

The effect of changing the gain (G) on stiffening is shown in Figure (5). The y-axis is the
normalized fundamental frequency of the adaptive beam normalized with respect to the frequency of
the passive beam (G = 0). The experimental values of the fundamental frequency are the
corresponding frequencies of the peaks of FRF plots (measured at pair [V) obtained from the spectrum
analyzer. The figure shows the system behavior for two (n = 2) active pairs of devices. It can be
seen that as the gain increases, the induced strain increases, and hence the stiffening increases. The
experimental values show good agreement with the analytical model predictions.

Table (II) illustrates the analytical and experimental first natural frequency of the beam for
passive and active cases. In this table number of active devices are varied from 0 to 2 at constant gain
(G = 38) and the analytical predictions are compared with the experimental results in terms of the
percentage error. The maximum percentage error is 5.3% atn = 1.

Table (IIT) gives the analytical prediction and the experimental results for two active device
pairs (n = 2) at different values of the gain (G). Excellent agreement is shown and the maximum error
is 5% at G = 50.

‘f 6. CONCLUSIONS

Analytical predictions based on Hamilton’s principle are compared with experimental data for
adaptive stiffening of a cantilever beam with embedded charge-driven mini-actuators. The mechanical
interactions between the host and the devices are modeled using eigenstrain method. Adaptive
stiffening of the adaptive beam was achieved experimentally by using constant gain, position-feedback,
distributed control. This paper demonstrates the ability of eigenstrain methods to model adaptive
structures containing mini-devices. This paper also illustrates that no significant stiffening can be
obtained for practical ranges of electrical excitation, using charge-driven actuators.
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Table (II): Effect of Number of Active Devices (n) on Stiffening at Constant Gain.
“

n

N -0

Analytical

Experimental %Error
2335 24.4 4.3
23.67 25.0 S
24.23 253 4.2

Table (III): Effect of Feedback Gain (G) on Stiffening for Two Active Devices (n = 2).
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0
5

9

20
29
33
38
41
44
50
56

Analytical Experimental %Error
23.35 24 .4 4.3
23.48 24.5 4.2
23.57 24.6 4.2
23.82 24.8 4.0
24.03 25.0 3.9
24.12 25.1 3.9
24.23 25.3 4.6
24.30 25.5 4.7
24.37 25.6 4.8
24.50 25.8 5.0
24.64 259 4.9
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Figure (1): Schematic Drawing of the Adaptive Beam.
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Figure (3): Adaptive Stiffening in Time Domain (Passive).
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