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ABSTRACT

This paper presents the interactions of a simple vibrating beam host with embedded
arrays of devices (actuators/sensors). The geometry of the device is idealized to be
ellipsoidal and Eshelby’s classical techniques are used to obtain a first order estimate of the
apparent stiffening of the host structure due to the interaction between the actuator and the
surrounding host, as a result of both far field and actuation loads. The far-field load is
assumed to have linear spatial dependence, while the actuation loads are assumed to be
spatially uniform. Preliminary analytical results for piezoelectric actuators embedded in an
isotropic host suggest that the solution for a uniformly distributed loading may provide
adequate accuracy for small volume fraction of embedded devices.

INTRODUCTION

This paper illustrates the role of closed-form eigenstrain methods based on Eshelby’s
equivalent inclusion eigenstrain techniques [1,2], for quantifying the mechanical interactions
in a sample Euler-Bernoulli beam with rows of embedded equally spaced piezoelectrical
sensor/actuator devices. The equations of motion of the system are solved using Hamilton’s
principle, based on a variational formulation of the system under investigation. The Rayleigh
quotient is used to study the change in the natural frequency of the structure due to harmonic
excitation of the actuators.

As shown schematically in Figure 1, two rows of uniformly spaced devices are
embedded in the beam at a distance d/2 symmetrically about the neutral plane of the beam.
Both rows of devices are excited simultaneously, in order to control the vibrational
characteristics of the beam. As the beam flexes, every alternate device in each row acts as
a sensor and the outputs are used in a closed-loop feedback circuit to actuate the active half
of the opposite row of devices. The actuation strain is assumed to be opposed in sign to the
bending strain for all actuations. The influence of the devices on the vibrational
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bending strain for all actuations. The influence of the devices on the vibrational
characteristics is investigated analytically by modeling the mechanical interactions between
each device and the host. The aim is to generate the electro-mechanical interaction
information, necessary for combining the device response with that of the host beam, in an
integrated dynamical equation of the adaptive structure. As an illustrative example, the
actuators are given a harmonic excitation proportional (but opposite in sign) to the bending
strain in the beam. The result is an apparent stiffening of the beam and an accompanying
increase in the natural frequency .

Several simplifying assumptions are made in this approximate analytical study.
Euler-Bernoulli beam theory is assumed to apply. Each embedded device is gssumed to be
a piezoelectric cylinder of elliptical cross-section, whose polarization axis is oriented along
the length of the beam. Thus, each device is approximated to act like elastic heterogeneity
embedded in a host structure. Perfect bonding is assumed at the interfaces. The
sensor/actuator material is assumed to be PZT-5H, and the host material is assumed to be
ALPLEX plastic. All materials are approximated to be linear and mechanically isotropic and
all losses are ignored. The linearizing assumption limits the validity of this approximate
analysis to small excitation voltages and small deformations. The assumption of mechanical
isotropy is an acceptable approximation for most PZT materials.

ANALYSIS

Eshelby’s classical equivalent-inclusion technique [1] is applied to obtain the elastic
interaction fields, both in the device and in the host, under both uniform and linear external
applied loads and under uniform internal actuation loads. External loads are handled through
Eshelby’s fictitious eigenstrain technique for uniform and linear loadings. Internal actuation
loads are treated as a real eigenstrains and are obtained from the linearized, isothermal,
coupled electro-mechanical constitutive models given below. The difference between PZT
sensors and actuators in the present analytical context is that the sensor only has a fictitious
eigenstrain due to external loads, while the actuator has both fictitious and real eigenstrains.

The linearized, isothermal, coupled electro-mechanical constitutive model is [3];

§=CE-4"E, o)

D

heé+eoE,

where @ is the mechanical stress vector, € is the total strain vector including

mechanical as well as electro-mechanical contributions, E. is the electrical field vector,

and D is the electrical displacement vector. C is the mechanical stiffness tensor, h is the

piezoelectric coupling tensor indicating the stress caused by completely constrained excitation
of the PZT material under a unit applied electrical field, and ¢ is the fully constrained
dielectric tensor for the PZT material. Arrows over a quantity are used to denote vector
quantities, while an underscore is used to denote tensor quantities. Clearly, only the
mechanical portion of this constitutive model applies to the ALPLEX host material,
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fictitious eigenstrain which has the same stress field as the real heterogeneity, under both
external loads and internal actuation strains. Thus, in the heterogeneity:

6°+3'=_CD(3°+E’-E’)
0% (1° + ¥ - )

2)

where &% =& + &f
C is the material stiffness tensor; superscripts D and H on the stiffness indicate the PZT
device and the ALPLEX host, respectively; superscripts o, / , 1, f and * on the stress and
strain terms indicate applied far-field value, perturbation due to the presence of the
heterogeneity, real actuation eigenstrains, fictitious eigenstrains due to external loading, and
total eigenstrains, respectively. The far-field strain is assumed to consist of a uniform and
linear contributions such that:

Thus, the eigenstrain €* is given as :

€y = E'yy + B® 1y X @)

and the perturbation strain €/ is

€y = By + Bl iy X, )

The eigenstrain €* consists of &* and &£ . Thus

€43 = E¥yy + BX iy X (6)
& =B A B s Xy (7)

In this study, Bjj, is assumed to be a null tensor. In other words, &- Iis
uniformly distributed. Thus, the real actuation eigenstrain is obtained from Equation (1) as:
& = E* = d" E, @®)
where d=hSP
d represents the free-expansion of the piezoelectric actuator for a unit applied electric field

and SP is the compliance tensor of the device material.
The total eigenstrain is now related to the disturbance strain by Eshelby’s strain
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concentration tensors S® and D" :

. 9)
Elyy= 85500 B'yy = S¥iyx1 (B + Efy))

B 45k = D% yxtan B 1an = D% iyxtmn (B g + B 1) (10)

As indicated earlier, Bf,, is assumed to be zero in this paper.

Eshelby’s strain concentration tensors can be computed for infinite spaces by using
Kelvin’s fundamental three-dimensional elasticity result for point loads; and for half-spaces
by using appropriate Green'’s functions [4]. Explicit forms for Eshelby's tensor are readily
available in the literature for embedded isotropic heferogeneities of ellipsoidal geometries.
Solutions for anisotropic cases may be obtained numerically [4].

Substituting Equations (9) and (10) in Equation (2), we obtain:

CPusxy CE®y + S8y (Ef + ET )
_Er.) =cCF (EO. + (11)
k! 19kl I

S i (B s ¥ Bo ) 8 Bl SE )

CDiJkl ( Bakls ® ka.lspmn ( prmn * Brpm )

r - N -] (12)
" BYye ) = C%yy (B, +

D o (B g 7B gl = By = B0
Recalling that B* is zero valued, Equations (11) and (12) can now be solved for

the unknown fictitious eigenstrains £° and Bf in terms of the applied external bending

strains E° and B° and the applied real actuation eigenstrain E° . This completes the

solution for the total stress and strain fields within the device, which can now be determined
from Equation (2). If the applied strain is uniform or linear, so is the fictitious eigenstrain.
Nonuniform applied strains can be approximated by & polynomial series which yields a series
solution for the fictitious eigenstrain [4]. In this paper, the far-field applied strain is assumed
to be linear over the length scale of each embedded device, in view of the simplifying
assumptions stated in the previous section.

The stress and strain fields outside the device, in the surrounding host structure are
more difficult to determine by Eshelby’s technique. Fortunately, the exterior field is not
required when computing the energy of the system due to the actuation.
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In this paper the mechanical and electrical energy terms are computed to obtain the
stiffening of the structure under harmonic excitation, through a suitable variational scheme.
The variational principle is a generalized form of Hamilton’s principle, and may be written
as [5]:

blf:(L+W)dt]=0 (13)

where the Lagrangian function L is the difference between the kinetic energy T and the
electric enthalpy H. The work term, W, includes the potential of all applied mechanical
loads and the electrical charges. Thus, using the definition of electric enthalpy; and noting
that E is restricted to devices, we can write

L=T-H

L= 1f (w?pilTd - €7C &) dv

Gl (14)

1 - - =3
+ -ifn(EIﬁE, +2 EQTE, )dv

where  is the natural frequency, p is the density of host or device, & is the displacement

field, and Q is the volume of the devices.
The work term, W, is given as

w=f (T7d - 0 §) da (15)
A

where T is the specified mechanical surface traction, Q is the specified surface charge

density, ¢ is the resulting potential and A is the surface area.
After some manipulations, for stationary solutions, the Rayleigh quotient can be
presented as [6]

T oT =
b [ @ceav fn(E, e B, )dv

16
fvpﬂ""ﬂdv ¥

w

The resulting natural frequency due to the actuation loads is the focus of our interest
in this paper, and results from (i) the linear flexural field of the beam, (ii) the passive
perturbation of the bending field due to the presence of the devices, and (iii) the actuation
field of the actuators.

The first term in the numerator of Equation (16) is termed the mechanical energy, and
is given by [8]:
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2Upocy = [ &7 CM BV« [ @7 o ST av
ol S go' E 2+
+f°é‘ A_Ce"dv+2f°e AC g® & dv (17)
+ fn ¢’ 5T AC sEeT dv

where AC =02 - ¢

The first term in Equation (17) is evaluated by integrating the uniform bending strain
energy density throughout the domain V of the beam. The remaining terms represent energy
due to the imaginary eigenstrains, real eigenstrains, and far field strains, and require
evaluation only over the domain Q of the devices. The terms with real eigenstrains represent
electromechanical energy. The exterior solutions for the real and fictitious eigensirain
problems are not required in this study. After some algebraic manipulations, the mechanical
energy is rewritten as:

2Unocy = fv ergheedv+ fn g°" Acee av
Y o H K"’ "'o'l" g""?‘
+fg£.“,C‘£E"dV+2an AC S% B dv (18)
+fn BT 88T AC 5% B dv+ fn XT BT cEDE B X dv
+ 2 fQJ?‘T‘a“Acnf B Xdv+ fnx‘r B DEACDE B X adv

The first two terms in Equation (18) represent the energy of the homogeneous applied
bending field. All other terms represent electromechanical coupling terms. The last three
terms represent the contribution from the nonuniform (linearly distributed) term. In the un-
stiffened (unactuated) case, the real eigenstrain will be zero and will not contribute to the
natural frequency. The uniform solution (obtained by ignoring the last three terms) was
presented earlier [8], and the purpose of this paper is to examine the change in accuracy by
including the nonuniform terms.

In order to perform the integrations in Equations (16) and (18), all that remains now
is to assume explicit representations for the applied flexural strain field, and the actuation
eigenstrain. For example, in the Rayleigh scheme for estimating the natural frequency of
conservative systems, an approximate displacement field can be assumed. In this example,
the approximate bending field is assumed to be harmonic in time and sinusoidal in space:

n 19
“zl: a, Sinlw t) Sin (”—?’) e

where the y axis is oriented along the length of the beam, w is the transverse displacement
in the z direction, ®, and a, are the natural frequency and amplitude, respectively, of the n'**
mode, L is the length of the beam, and t is time. Only the fundamental mode (n=1) is of

interest in this study. Thus the only non-zero term in the bending strain field €° is €5 |,

and is given as:
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2
R l;‘—:al sin(w,t) sin(ZX) (0)

where, z is the distance of the device from the neutral axis of the beam. This strain field
varies linearly in z direction, and is modeled by a piece-wise linear distribution in the y
direction. The only non-zero component of the uniform actuation voltage vector is now

E,, and is assumed to be proportional to the output of the sensory devices, and hence, to
the bending strains. Thus E_ is written as:

21
E, = E,' Sin(e,t) Sin(—’%f) 0

where the amplitude E,* is selected to be proportional to the amplitude of the bending

strain due to the fundamental vibrational mode of the beam:
72 (22)

K is the feed-back proportionality constant.
The non-zero terms of the actuation strain vector are now written as:

(23)

Equations (19-23) are used in Equation (16) to compute the natural frequency of the
system. The Rayleigh scheme for estimating the fundamental natural frequency of the
structure is helpful to understand the dynamic behavior of the beam. Sample results, for
natural frequency of the adaptive beam structure, are presented in the next section.

RESULTS AND DISCUSSIONS

The material properties assumed in this analysis for the PZT-5H sensor/actuator
device and for the ALPLEX host are given in previous paper [8].

Figures (2)-(4) show the stiffening effect by assuming uniform and linear applied
field. For convenience, the natural frequency () is normalized with respect to that for zero

electrical excitation ( w, ), and the actuation strain amplitude ( € ) is normalized with

respect to the far field strain ( € ). The increase in the natural frequency is a measure of

the stiffening of the beam due to the actuation loads.
The incremental change obtained by assuming a linear applied field is found to be
negligible compared to the solution for the uniform field. For example, the maximum
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change is less than 1%, for a device volume fraction of 20%. Thus, these figures are almost
identical as those obtained for the uniform solution [8]. In Figure (2), the volume fraction
(Vp of devices has been increased, not by increasing the number of devices as in previous
papers [2,7,8], but by increasing the size of each device, relative to the host beam
dimensions. The maximum volume fraction is maintained below 5 %, in order to minimize
the interactions with neighboring devices and with boundaries of the host. Figure (3)
illustrates the dependence of the stiffening effect (natural frequency) on the location of the
actuators, relative to the neutral axis. As expected, moving the actuators away from the
neutral axis increases the natural frequency, for the same excitation strain. Figure (4)
illustrates the relative contributions of the mechanical interaction energy (U,,.,), and the
electical energy (U,,..), towards stiffening of the structure. The mechanical term is
comparable in magnitude to the electrical term, and its relative contribution increases as the
actuation load or the host stiffness is increased.

CONCLUSIONS

This paper presents a unified approach, based on Eshelby’s technique, for addressing
the interaction mechanics of devices embedded in an adaptive structure. The analysis used
is based on assumptions of linearly and uniformly distributed far field loadings and only
uniform actuation strains. The results did not change significantly by assuming a linearly
distributed applied field, and the maximum percentage change is less than 1%. Thus the first
order approximation (uniform solution) is adequate for modeling the "smart” beam for low
volume fractions of actuators. In view of the algebraic complexity, polynomial solutions of
higher degree (i.e. quadratic and higher) are considered to be unnecessary for this type of
problem,
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Figure 1. Schematic of Adaptive Beam with Embedded Rows of Devices.
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