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Abstract

This paper predicts the natural modes and natural fre

quencies of a bearingless rotor using component mode synthesis (CMS)

method. CMS is an excellent method to analyse the vibration of large complex structures. The rotor is modelled as two
substructures. The natural frequencies and the frequency response functions are presented. Results obtained by the CMS

method are compared with results obtained using UMARC (University of Maryland Advanced Rotorcraft C
shows good agreement and exposed the capability of CMS method to model the bearingless rotor.

ode). The comparison
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Nomenclatures

a interior region

[A] transformation matrix
b interface region

A force vector

N identity matrix

(K] stiffness matrix

M) mass matrix

n transformation matrix
u axial displacement

lag displacement
flap displacement

W slope of flap displacement

£ <

X displacement

(o) modal displacement

v slope of the lag displacement
(9] modal matrix

@ elastic twist

® natural frequency

i substructure

1,2 substructure 1 and

1 Introduction

Component mode synthesis (CMS) method was first
proposed in early seventies [1] and later improved by other

researchers including Ookuma and Nagamatsu [1.2,3]. In
this method the structure is divided into substructures or
components. These components are classified into master
and branch components. The mass and stiffness matrices
of each component are calculated separately, imposing
only the external boundary conditions.

Ookuma and Nagamatsu [1] improved the CMS method by
considering the connecting regions of the components as
interface components. By doing that, they eliminated two
defects in the original CMS. The first one, components no
longer have to be classified into masters and branches, and
the second one, direct connection of two branches or two
masters are possible. In this paper we will refer to the
improved version as CMS.

This method is useful to model large and complex
structures [4,5] where the exact solution is not available or
numerical techniques, such as the finite element method
(FEM), are inefficient. In this method, the interface regions
are rigid, while the majority of the programs in the market
are based on free interface regions [2).

CMS methods have been used by researchers to model
complex structures such as rigid-body dynamic of a general
state-space models [6], robotic manipulator [7.8,9], rotor
dynamic [10,11], smart structures [12], multi-floor system
[13] and helicopter tail-boom structure [14]. Also, CMS
have been integrated easily to model impact mechanics of
flexible structures [15], control of large trusses [16] and
structural optimization [17)]
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CMS methods of analysing large structures is a powerful
tool available in several finite element packages where
effort is being made by researchers to integrate CMS with
the Finite Element Method (FEM) [18,19).

The bearingless rotor is a complex structure. It has three
major components. CMS is a good analysis method to
model each component separately and then assemble
these components using the CMS algorithm. The CMS is
also applicable to structures with more than two
components.

In this study, the bearingless rotor is divided into two
components. The first component is the main blade and
the flexbeam and the second one is the torque tube. The
analysis of UMARC [20] is based on the finite element
method. UMARC is used to predict the natural modes and
natural frequencies of the rotor. Also, UMARC is used to
calculate the mass and stiffness matrices of the
components of the bearingless rotor to be used in CMS

method. Results obtained by CMS method are compared
to results of UMARC.

2 Component mode synthesis

¢ Consider the structure shown in Figure (1). This structure
can be divided into two parts or components, 1 and 2. The
interface region b between them is called connecting
region. For harmonic motion, the equation of motion of the
substructure i (i=1,2) can be written as;

K{'JIJ'KD 2 MaaMa xt! 0

- =
Ku K ' f'V!u j"/[ X F I
(1

where [M ]and[K]are the mass and the stiffness

1

Xa
matrices, respectively.

Xh

the displacements of the substructure /, a being the interior
region and b the interface or connecting region, see Figure
(1). The force F is the internal reaction force acting between

is the space vector containing

# components 1 and 2.

Substructure 2

Substructure

Interior Interior
Region 1a Region, 2a

Interface
Region, b

Fig. 1: Total Structure with Two Components.
Using Guyan's static reduction method, and omitting the
inertia term in Equation ¢1), the displacement of the interior
region can be represented in terms of the displacement of

(e =~ Kol [Kan): (5, = [T], (), (2)

the interface region,
Thus the internal degree of freedom of substructure i is

= [ﬂ (), ©)

Xb j

reduced to the degree of freedom of the interface region,
where | is the identity matrix.

The mass and stiffness matrices of Equation (1) are

[ﬁ]iz[j"?' ]], M oo M an [T

:! (4)
MMy |, L1, O

— KmKﬂ T
[K].Z[TT 1], : [ ] (5)
Kba Knp 11;

]

reduced using Equation. (3),
At the interface region, the displacement of the substructure
iis the same as the interface region for both components,

(x5)=(xa), (6)

Using the above
reduced equations, the equation of motion of region b

lx+k ot bin w)=0) o
becomes,
The modal matrix [Q)] » of the interface region b is obtained °

from Equation (7). The constrained modal matrix of
substructure i, [q!) .+ Is obtained by fixing the interface region

(K- 0 (M), )(x),= 0) ®)

of component i in Equation (1),
The displacement of the total structure can be written as (1,
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%) g, 0 0]%
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(9)

The equation of motion of the total structure is

K""”I 5 K"mz K")al Kba: Mbb, + Mbb; Mba, Mbal 5 0
2
K,, Ke, 0 |-w M, M, 0 x [=10] 0
Ku‘bz 0 KM. Mabz 0 Maa3 X2 0
Substituting Equation (9) into Equation (10), we get
c : Kbb, + Khh: Kbq Kba, ) Mu;. + Ma-.s, -Mba, Mba: b 0
2
l4] Ka, Ky 0 [4]-0[4] M, M, 0 [[4]fx|=[0] a1
Ko 0. X, M, 0 M, | lo
This equation can be written as,
([&]- 0 [M])(0)=(0) (12)
Now the equation of motion of the whole structure is
transformed into an equation of the modal coordinates. The LAG HINGE
natural frequencies and natural modes of the total structure n
are obtained from Equation. (12). G |
3 Rotor Dynamics HUB
In fixed wing aircraft, propulsion, control and lift are
provided by three separate mechanisms. On the other
_hand, the rotor provides all of the three functions in a
0_ helicopter.  This introduces great complexity to the
- helicopter rotor. Since the blades are flexible, there is
substantial motion in response to aerodynamic forces. ROTOR
In forward flight, the aerodynamic forces vary across the SHAFT
rotor disk, due to higher incident velocity on the advancing SYSTEM
side of the disk. This causes flapping motion on the blades
as the blades rotate. Flapping motion generates coriolis L
forces which causes a lead-lag motion. The blades must Fig. 2: The Rotor.
also have the ability to pitch in order to vary the lift vector. ; : . ; :
In order to relieve stresses at the root end of the blade, Wi fep gnd lag hinges. There is also a p.'tCh bearing
; : : 2 2) Teetering rotor. Two blades form a continuous structure
conventional rotors use hinges or a flexible region at the ttached at th h : ; ; : :
root for lead-lag and flapping motions. A pitch bearing is altachec at the rotor shaft with a single flapping hinge in the
normally used to vary the angle of attacic of the aerofoil (see form of a teetering or seesaw arrangement. There are no
Figure (2) 4 g lag hinge. But, there is a pitch bearing.
: ; ) 3) Hingeless rotor. There are no flap or lag hinges, but
The fqur types of helicopter rotors are: there is a pitch bearing.
1) Articulated rotor. The blades are attached to the rotor

4) The fourth one is the bearingless rotor.
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3.1 Bearingless rotor

A bearingless rotor is a rotor with no flap or lag hinges, as
well as no pitch bearing (see Figure (3)). Instead, there is
a torsionally soft "flexbeam" located between the blade and
the hub. The flexbeam is usually made of composite
materials. Composites are used because of their high
strength, stiffness and fatigue/weight ratios. The flexbeam
is required to be stiff at the hub and flexible at the blade.
Pitch control is achieved through a torsionally stiff torque
tube which is attached to the blade and encompasses the
flexbeam. Angles of attack are varied by rotating the torque
tube with pitch links. Since hinges and bearings are not
used, mechanical complexity reduces significantly,
maintainability improves, and the rotor is aerodynamically
more efficient. The analysis of a bearingless rotor is more
involved than of a hingeless or an articulated rotor due to
the multiple load paths near the blade root and nonlinear
bending-torsion couplings due to large twist of the
flexbeam. The disadvantages of bearingless rotor include,
susceptibility of the rotor to flutter and an explosive
instability called air/ground resonance.

Fig. 3: Bearingless Rotor.

In Figure (3), bearingless rotor consists of three major
parts; the main blade, the torque tube, and the flexbeam.
These components are connected together as shown in
Figure (3). The main blade and the flexbeam are modelled
as one substructure, while the torque tube is modelled as
one substructure.

3.2 UMARC

1 The UMARC (University of Maryland Advanced Rotorcraft
Code) is a comprehensive code, which is based on finite
element analysis and readily adapts to existing as well as
evolving advanced rotor designs, and offers a multitude of
analysis options. In addition, the code provides a user-
friendly interface and uses state-of-the-art techniques for
rotor analysis. In this study, UMARC is used in two stages:
1) to calculate the mass and stiffness of the elements of the
bearingless rotor to be used in CMS, and 2) to predict the
natural frequency and the natural modes of the bearingless
rotor.

Following the UMARC finite element analysis, the main
blade is divided into three elements (elements 1-3), the
flexbeam is divided into two elements (elements 4 and 5),
and the torque tube is divided into 2 elements (elements 6
and 7), as shown in Figure (4). Thus, elements 1-5
represent the first substructure, and elements 6-7 represent

the second substructure.
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Fig. 4: Finite Elements Modelling of the Bearingless
Rotor.

Every element has 15 degrees of freedom (DOF) as
shown in Figure (5). Each element has 5 nodes. The
internal nodes have 1 DOF each while the external ones
have 6 DOF each. Notations in Figure (5) are as follow.
u is the displacement in x direction (axial).

v s the displacement in y direction (lag).

v isthe slope of the displacement in y direction.

W is the displacement in z direction (flap).

w is the slope of the displacement in z direction. J
@ is the elastic twist.

Fig. 5: Beam Finite Element Used for Bearingless Rotor.
4 Results and Discussions

4.1 Natural frequencies

Tables (1) to (3) represent the natural frequencies obtained
using UMARC and CMS method for axial, flap and torsion,
and lag modes, respectively. In these tables the first ten
frequencies of the three modes are given. The first column
is the frequencies obtained by UMARC and these
frequencies are assumed to be the exact ones. The
second column is the frequencies predicted by the CMS
method, and the third column is the percentage error
between the results of CMS and the UMARC results.
Because of the coupling between the flapping and torsional
modes, the natural frequencies are the same.

Table (1): Natural Frequencies for Axial Mode.
CMS UMARC % Error
20.3500 | 20.3511 0.0054
28.8046 | 31.0647 7.2755
67.4820 67.4823 0.0004
77.7956 77.7956 0
84.4246 | 84.4249 0.0004
134.6418 | 134.6420 | 0.0001
150.7169 | 150.7170 | 0.0001
204.6306 | 204.6310 | 0.0002

@~ O[5 WM = -
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9 |218.2338 | 218.2340 | 0.0001
10 | 234.9174 | 234.9170 | 0.0002
Table (2): Natural Frequencies for Flap and Torsion
Modes.
n CMS UMARC % Error
1 1.1661 1.1528 1.1537
2 |.2:3362 2.3877 2.1988
3 | 36178 3.1735 14.0003
4 | 6.0112 5.5911 7.5137
5 | 14.2905 14.1407 1.0594
6 | 14.5851 14.6374 | 0.3573
7 | 24.5871 27.5966 10.9053
8 | 31.0642 | 31.2857 | 0.7080
9 [41.3214 | 41.3259 | 0.0109
10 | 46.2541 46.2613 | 0.0156
Table (3): Natural Frequencies for lag mode.
n CMS UMARC | % Error
1 0.6932 0.7575 8.4884
2 | 4.4306 4.4868 1.2526
3 10.0363 10.1052 | 0.6818
4 |24.3663 | 24.3915 | 0.1033
5 |65.1705 | 65.1737 | 0.0049
6 | 126.9320 | 126.9340 | 0.0016
7 ] 196.1346 | 196.1410 | 0.0033
8 | 415.2907 | 415.2880 | 0.0007
9 | 532.7215 | 532.7240 | 0.0005
10 | 977.2700 | 977.2760 | 0.0006

Results obtained showed excellent agreement between
CMS method and UMARC for the three modes. The
maximum errors are 7.3%, 14.0% and 8.4% for the axial,
torsional (and flapping) and lag modes of vibrations,
respectively. Error is attributed to numerical approximation
and/or coupling between vibration modes.

4.2 Frequency response functions

Figures (6) to (8) illustrate the point receptances obtained
by UMARC and CMS method for axial, lag, and flap modes,
respectively. In these figures the x axis represents the
nondimensional frequency corresponding to excitation
frequency normalized with respect to the rotor RPM. In

). Figure (6) we see excellent agreement for the location of

the first few resonances but the magnitude of CMS plot is
less than that of UMARC. This is partially due to numerical
approximation. Point receptance here refers to excitation
of the first node (at the tip of the blade) by axial force and
measuring the response at the same node. The small
number of elements was chosen in accordance to UMARC,
since UMARC is used to generate the mass and stiffness
matrices. Large number of elements may result in a better
agreement as suggested by Ookuma and Nagamatsu [1].
On the other hand UMARC considered only 7 elements.

Had a larger number of elements been taken, it is possible
that results would be closer to reality, and perhaps better
agreement.

—cms
107} - - UMARC

10" 10 10’ '

Frequency

Fig. 6: Point Receptances for Axial Mode.

In Figure (7), point receptances predicted by UMARC and
CMS for the lag mode are given. Point receptance is
calculated by exciting the first node (at the tip of the main
blade) in lag mode and measuring the response at the
same node. Again, excellent agreement between UMARC
and CMS method is obtained in terms of the location of the
resonances. Also, the magnitude of the CMS transfer
function is always less than that of UMARC except at the
second mode resonance. One could think of this
discrepancy between the two methods due to coupling
between vibration modes and/or the rigidity of the interface
region in CMS analysis.

:
0 |' I —CMS
4 - - UMARC
10’ ,'-
i
* .

107 10° 10' d
Frequency

Fig. 7: Point Receptances for Lag Mode.

The last set of point receptance functions is shown in
Figure (8). In this figure, point receptances for flap mode as
predicted by UMARC and CMS method are given. Similar
conclusions to that of the lag mode can be made about this
mode response.

Transfer receptance function for flap excitation at the tip of
the rotor and torsional response measured at the tip of the
rotor is shown in Figure (9). Note that, unlike other modes,

FRF as predicted by CMS is higher than UMARC FRF at
low excitation frequency.
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Fig. 8: Point Receptances for Flap Mode.

=
—
T
-
——

" o 10 10
Frequency

Fig. 9: Transfer Receptances for Flap Mode.

In Figure (10) the rotor is excited in flap mode at the torque
tube and response is measured at the tip of the rotor. The
solid curve represents the flap mode response, and the
dashed curve represents the torsional mode response.
These two curves show coupling between the flap and the
torsional modes. The other curves denote axial and lag
. jodes that are not coupled with the flap mode. This can be
“inferred from the relative magnitude of the modes.

5 Conclusions

This paper predicts the natural modes and natural
frequencies of a bearingless rotor using Component Mode
Synthesis (CMS) method. UMARC (University of Maryland
Advanced Rotorcraft Code) is used to verify the accuracy of
CMS method in modelling the bearingless rotor and also to
generate the stiffness and mass matrices of each
component of the rotor. Results obtained by CMS method
show excellent agreement with UMARC in predicting the
natural frequencies, and fair agreement in predicting the
frequency response functions. This study demonstrates the
capability of CMS method to model the bearingless rotor.
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Fig. 10: Transfer Receptances for Flap, Axial, Torsional,
and Lag Modes Due to Flap Excitation at the Fixed End of
the Torque Tube.
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