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ABSTRACT: Three-dimensional eigenstraintechniquesare used inthispaper to model mechanical
interactionsin an active structure contai ning small embedded sensorsand actuators. Eigenstraintech-
niquesare used to predict the state of the strain inside the devices (sensors and actuators) under exter-
nal and internal loads. The elastic energy of the structureiswrittenintermsof thestraininsidethede-
vices, and an analytical dynamic model is developed based on a generalized form of Hamilton's
variational principle. Asan example, the dynamic response of an active cantilever beam containing
embedded mini-devicesisinvestigated analytically and experimentally. Specifically, active stiffness
tailoring capabilitiesareexplored. An analytical solutiontothevariational problemisobtained by us-
ing the Raleigh-Ritz approach. A numerical exampleisgiven and the response of the active structure
isverified experimentally, using acantilever beam made of Alplex plastic ashost material and piezo-
electric (PZT-5H) devices as active mini-devices for sensing and actuation. The analytical results

show reasonable agreement with the experimental observations.

INTRODUCTION

A ctive materials and intelligent systems have attracted a
great deal of interest from researchers for many years.
Active structures have been used in the area of active vibra-
tion control by many researchers, seefor example, Burkeand
Hubbard (1987), Tzou and Tseng (1990), Ha, Keilers and
Chang (1992) and Reddy and Barbosa (2000). Piezoelectric
materials have attracted significant attention for their poten-
tial application as sensors and actuators for controlling the
response of active structures. In active structures, distribu-
tionsof sensors, actuators, and dataprocessing capability are
used to modify, tune, and control the response of structuresto
sensed stimuli.

Numerous studies have model ed the interactions between
devicesand hostsin active structures. The response of active
structures with assemblies of piezoelectric wafers in com-
posite beams have been analyzed by using simplebeam mod-
els (Bailey and Hubbard, 1985), pin force models (Crawley
and de Luis, 1987), large deformation beam theory (Im and
Atluri, 1989), laminate analysis (Crawley and Lazarus,
1991), nonlinear analysis (Pratt, Queine and Nayfah, 1999),
and one-dimensional eigen-function approximations (Lin
and Rogers, 1992). Variational methods have also been de-
veloped for solving the coupled boundary value problemsin
active structures. These include finite element methods
(Allik and Hughes, 1970; Gaudenzi, 1997; Mahut, Agbosou
and Pastor, 1998), Rayleigh Ritz methods (Hagood, Chung

*Author to whom correspondence should be addressed. E-mail:
aljinaidi@hotmail.com

and Flotow, 1990) and strain energy methods (Wang and
Rogers, 1991; Chee, Tong and Steven, 1998). In this paper,
eigenstrain analysisiscombined with avariational method as
amodeling technique for active structures.

Most present-day active structural systemsconsist of rela-
tively large surface-mounted “active” elements that can
causestructural integrity problemsdueto high stressconcen-
trations, poor interfacial bonding, change in the boundary
conditions, etc. These limitations can be partially overcome
by using mini-devices with less obtrusivity, and embedding
them throughout the host to achieve adequate control author-
ity. However, embedding of small devices produces three-
dimensional stress interactions that are more difficult to
model than those arising in surface-mounted devices and
thereisalack of generic modeling techniquesfor such struc-
turesin the open literature. Neverthel ess, number of devices
increases by distributing them into the structure and this
leadstolessreliable system. Thefocusof thispaper isoneac-
tive structure with distributions of embedded devices whose
volume fraction is less than 2%.

Eshelby’s equival ent-inclusion technique (Eshel by, 1957)
offersaconvenient method to model the presence of an ellip-
soidal heterogeneity inside an isotropic host structure. This
technique is used in this paper to model the elastic interac-
tion between actuators/sensors and the host, by using appro-
priate Green’sfunctions. The equations of motion of the sys-
tem are derived using a generalized Hamilton’s principle.
The resulting system is solved with a Rayleigh-Ritz tech-
nigue. The change in the natural frequency of the structure
due to harmonic excitation of the actuator is examined ana-
lytically.
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Adaptivity of thebeamisillustrated through active stiffen-
ing of the cantilever beam for position feedback control. Ex-
perimental verification of the analytical model is presented
for a cantilevered Alplex beam containing small-embedded
PZT-5H sensor/actuator mini-devices.

ANALYSIS

Eigenstrain is a name used in the literature (Mura, 1991)
for stress-free strains such as unconstrained thermal expan-
sion. A powerful and unified solution method, based on
eigenstrain calculations, was introduced by Eshelby in the
late fifties (Eshelby, 1957, 1959) to solve the elastic prob-
lem of anisotropic ellipsoidal heterogeneity inside anisotro-
pic infinite matrix. Since then, this method has been used
by many researchers for stress analysis in composite mate-
rials and fracture mechanics (Christensen, 1991; Mura,
1991).

Asshown in Figure 1, an active structure with embedded
mini-devicesis modeled as alarge elastic host medium with
embedded ellipsoidal elastic heterogeneities. Host and de-
vice materials are approximated to be linear and mechani-
cally isotropic.

The variational principleis a generalized form of Hamil-
ton’s principle, and may be written as (Tiersten, 1969),

51:0 (L +W) dt =0 @)

where d isthe variational operator, L isthe Lagrangian func-
tional; whichisthedifference betweenthekinetic energy and
the electric enthalpy; Wisthe external work term, and (to, t)
defines the time interval over which stationary values are
sought.

Thelinear isothermal coupled electro-mechanical consti-
tutive relation for piezoelectric material is given as (Ikeda,
1990),

oH
0jj :a =Cijn & 8 Ex 2

Inclusion

Figure 1. Active structures.
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D = _6_Ei =6y & +§E; (3

where gj; is the stress tensor, H is the electric enthalpy, €;;
is the strain tensor, Cjjy is the mechanical stiffness ten-
sor evaluated at constant (zero) electrical field, g is the pi-
ezoelectric stress coupling tensor, E, is the electrical field
vector, D; isthe electrical displacement vector, and sﬁ isthe
dielectric permittivity tensor evaluated at constant (zero)
strain.

Using the definition of electric enthalpy (Tiersten, 1969),
substituting for the work term (assuming only electrical
work), and taking the first variation one can get,

_[:0 H\,Ui poudv + [ & Ci 08 v —[ §8q Ecdv

—J’Q 5g; §;; Edv _IQ E g &;dv —J’SQ d/dABblt =0 (4

where u; is the displacement vector, p isthe density, visthe
volume of the beam, Q isthe volume of the devices, Qisthe
specified surface charge density, V is the electric potential,
and sisthe electrode surface area of the devices. Thisisthe
electro-mechanical variational equation governing theactive
structure consisting of the host and the embedded devices.
Theintegration domainin theabove equation coversthe host,
sensors, and actuators. The structural effect of sensors and
actuators on the structure is considered. If the direct
piezoelectricity effect at sensors and actuators is ignored,
thenthe electrical field isthat dueto potentialsapplied at the
surface of the actuators.

Inthispaper, the eigenstrain techniqueisused to model the
mechanical interactions in adaptive structures between em-
bedded devices and the surrounding host structure. The
eigenstrain technique provides a three-dimensional solu-
tion for mechanical interactions resulting from the pres-
ence of active (piezoceramics) elements. Also, the
eigenstrain technique is capable of modeling the induced
strainsinside (piezoceramic) actuators caused by (electrical)
excitation.

Consider an unbounded isotropic material with elas-
tic constants Cjjq containing a domain Q (the heterogene-
ity) with elastic constants Cﬁ‘m (see Figure 1). Assume
that the heterogeneity has its own applied eigenstrains sj
This applied eigenstrain is a result of the induced strain in-
side the inclusion &ff. Examples of & include thermo-
mechanical, electro-mechanical, and magneto-mechanical
strains.

Denote the applied strain at infinity by si‘J? and the distur-
bance strain, dueto the presence of the heterogeneity and the
applied eigenstrain, by €. The disturbance stresses of; are
in self-equilibrium, so that:

o . =0 (5)
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The displacement boundary condition of the problem leads
to:

W=0 aow (6)

Eshelby’s method for modeling the disturbance field is
based upon modeling the heterogeneity problem asan equiv-
aent inclusion in homogenous media with fictitious
eigenstrains eig that producethe samestressfieldin Q asthe
original heterogeneity.

The stress inside the heterogeneity is written using
Hooke's law as,

0=+ g+ -) @ @

where
o;;=0 OD (8)
;=0 OD ©)
W=0 @D (10)

Here si"}‘ isthe induced strain (produced by electrical excita-
tion for electro-mechanical materials).

The heterogeneous inclusion is simulated by an inclu-
sion in the homogenous material experiencing both an ap-
plied eigenstrain siﬁ’, and an equivalent fictitiouseigenstrain
ef
]

Gj; =Uﬁ+0{j =Ci (& t4 -% -g) @ @A

The fictitious eigenstrain sig models mechanical interac-
tions with the surrounding host structure due to external
loads i}, whiletheapplied eigenstrain €[ models mechani-
cal interactions resulting from the induced strain s,"j‘ The
equivalence between Equations (7) and (11) leadsto (Mura,

1991)

Ci?kI(S(IZI +eg —€) :Cijkl(sl‘zl +8 - & ‘%) (12)

If both the far-field strain € and the applied strain & are
uniform, then the perturbations strain inside Q is written as
(Eshelby, 1957)

Ei/j =S (&g +€0) =Sju & (13)

where the S is Eshelby’s fourth-order strain concentra-
tion tensor (see the Appendix) and total eigenstrain
M _ p f
To determinethetotal eigenstrain € oneneedsto substi-
tute Equation (13) into Equation (12). The equivalence con-
dition becomes,

Ci(jjkl (R * SamEm ~ &) =Cija (& +Sgm &m ~ &) (14)

Equation (14) represents a system of six linear independent
equations for six independent components of the unknown
eigenstrain tensor &,

Intheabsence of theinduced strain sﬁ‘ insidetheheteroge-
neous inclusion, Equation (14) becomes,

Ci?kl (€% + SarmEm) =Ciju (&4 +Sym&m ~ &) (15)

where g =g/ .

This equation represents the heterogeneity problem
(zero applied eigenstrain). One can solve for the ficti-
tiouseigenstrain sig intermsof the far-field strain ¢ asfol-
lows,

& =& =[(Cfix ~Ci)Sarm +Ciim] *Compr ~Cipr) &
(16)

Similarly, for aheterogeneousinclusionin the absence of the
applied far-field strain, Equation (14) becomes,

Cila SamErm * €11) =Ciig (Sambmn ~ &) (17)

where g =¢f. The real eigenstrain €f can be written in
terms of the induced strain aﬁ‘ in the heterogeneity as fol-
lows,

g = ei?[(ci?kl =Ciji)Sarm *+Cijm] 1Cr?‘npr &

o (18)

Thus, the total eigenstrain can be solved in terms of si‘]? and
&

Now by knowing the total eigenstrain, the perturbation
strain inside the heterogeneity can be found using Equation
(13) and the solution is compl ete.

The second term in Equation (4) can bewritten in terms of

the eigenstrain as (Alghamdi and Dasgupta, 1993),
IV €;;Cijia 08 dV :IV ﬂ'?cijkl dggdV "‘IQ ‘%Cijm Sim 5Ede
+IQ 8§Acijkl gy dV +_[Q “—3 DG4 Syrm S dV
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(19)

where AC;y =Cfly ~Cijy-

In the present analytical context, both sensors and actu-
ators have a fictitious eigenstrain due to the external far-
field loads, while the actuators have additiona
real eigenstrains due to the converse effect of the actua
tion voltage. As mentioned above, the real eigenstrains
dueto the direct effect at sensor and actuator areignored be-
cause of their negligible magnitudein comparison to that as-
sociated with the converse effect due to the excitation volt-

age.
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RAYLEIGH-RITZ APPROXIMATION

In this section the principle of dynamical modeling of
adaptive structures are combined with eigenstrain tech-
nigues presented in the previous section for a one-
dimensional adaptive structurein the form of adaptive beam.
The analysis methodol ogy for modeling mechanical interac-
tionsbetween the devicesand the host using eigenstrain tech-
niques, as presented in the previous section, isnot limited to
cantilever beams but can be used to model any structure by
assuming appropriate strain distributions. Eigenstrain tech-
niguesare madeto handlethreedimensional structures, how-
ever, only one-dimensional beam problem is studied herein
this paper to reduce complexity of algebraic manipulation
andtoillustratethetechniquesin thefirst hand and to makeit
possible to be compared to an easy-to-make experimental
setup.

The simple illustrative example chosen here is an active
structurein theform of acantilever beam with many embed-
ded mini-devices. As shown schematically in Figure 2, two
rows of uniformly spaced mini-devices are embedded in the
beam symmetrically about the neutral plane of the beam. For
simplicity, onerow isassumed to contain all sensors, and the
other all actuators. Asthebeam flexes, the outputsof individ-
ual sensors are used in a position-feedback circuit to actuate
the corresponding (samey-location) active device (actuator)
inthe oppositerow. Theresult isastiffening of the beam and
an accompanying increase in the natural frequency w, if al
losses in the system are ignored.

Assuming an Euler-Bernoulli beam formulation for
the host cantilever, and in accordance with Rayleigh-Ritz
techniques, the transverse displacement function (w) for the
first vibrational mode is assumed to be sinusoidal in the y-z
plane:

_0_ Oy
W—% cosBz%r(t) (20)

wherel isthebeam length, y-axisisoriented along thelength
of the beam, and r(t) is a generalized mechanical degree-of-
freedom representing the tip displacement. Equation (20)
provides an approximate shape of the beam deflection. In
more general situations, generic beam functions need to be
used to approximate beam deflection. Also, due to the com-
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Figure 2. The active cantilever beam.

plexity of the eigenstrain techniques only the first mode of
vibration is modeled here.

The voltage generated in the sensor is assumed to be pro-
portional to the strain at that sensor (Alghamdi, 1995)

V, =7, EA—ECOS

wherez,,andy,,arethe coordinate of themid point of thesen-
sor, hy;; isthe piezoel ectric voltage-strain coupling tensor, 8;;
is the constant solution tensor defined as,

8; (%) = v; (X) +Sj e (X) (22)

hs., B;tsr (1) (21)

wherey; isthe appropriate shape function for the strain field
in the beam, and n;; is defined as,

d o
rmpr)ykl (X)

Ni; (%) = [(Cfly = Cij)Sarm +Cijrm] ™ Corrpr =C

(23)

and t; is the sensor thickness.
Theelectrical voltage applied at the surface of the actuator
is proportional to the sensor voltage (V)

V=GV, (24)

where G is the constant feedback gain. Substituting Equa-
tions (13), (16) and (19) into Equation (4) and allowing arbi-
trary variation of r(t) and V(t), one obtains the following set
of equations for the system,

MF(t) = Cr (t) +K,r () +KoV () =0 (25)

Kar()+SV(t) =1 (26)

where M, K, C,, K, and S, are the mass, stiffness, passive
structural damping, €l ectro-mechanical coupling, and capac-
itance, respectively, and q is the applied charge at the sur-
facesof the actuators. The passive tiffnessterm (K, the ac-
tive stiffness term (K,) and the electrical term (S,) were all
calculated using eigenstrain analysis developed in the
previous section. Details of these terms can be found in
Alghamdi (1995).

Thetype of structure under investigation, seeFigure 2, has
discrete actuators of simple geometry where the potential
fields are assumed directly and measured experimentally.
The value of V(t) in Equation (25) (“actuator” equation) is
calculated using Equations (21) and (24). Equation (26)
(“sensor” eguation) relates the applied voltage and the me-
chanical displacement to the surface charges.

Substituting Equations (21) and (24) in (25),

ME(t) +C,r (1) +[K, +K,GIr(t) =0 (27)

where Gy is the total feedback gain representing feedback
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gain (G) and the appropriate piezoelectric coupling coeffi-
cient.

For harmonic motion, the sguare of the first frequency of
the system is

K,+G'K
wf :% (28)

The frequency response function is

a= 1 (29)

JK,p +GTK, —6PM)? +( )2

where w is the excitation frequency.
ANALYTICAL RESULTS

Theprimary focusof thispaper isto devel op atechniqueto
analyze active structures that have many small active ele-
mentsinstead of afew large ones. The goal of thissimpledy-
namic analysisisto show the capability of eigenstrain tech-
niques to model responses of active structures, in particular
active stiffening. Experimental verification of theseresultsis
presented in the following section.

The chosen beam in this study has the dimensions shown
in Figure 3. Device volume-fraction (V;) iskept at 2% in the
theoretical analysisto minimize the mechanical interactions
between the devices. The changein thefirst frequency of the
structure due to harmonic excitation along with ashift in the
peaks of the frequency response functions (FRF) of the
damped system are presented as measures of active stiffen-
ing.

The “actuator” equation is written in terms of the funda-
mental frequency w, as given by Equation (28), and interms
of themagnitude of thefrequency responsefunction asgiven
by Equation (29).

VA
A
/(n+1) V(n+1) l/(n+1)
) @—ho®th &
X Spmmmmmmmmmmmeees 3— ——————————————————— L4
o @ ) @,
5 1 .

n = Number of
Device-Pairs

b =50 mm
h=10mm
1 =250 mm
<« 8 mm

Figure 3. Dimensions of the modeled active cantilever beam.

Effect of Device Density

Figure 4 shows the effect of increasing the size of the de-
vice (hence device volume-fraction) on active stiffening, at
four device pairs (n = 4). The maximum device volume-
fraction (V;) isonly 2% of the beam volume. Feedback gain
(G) isincreased from O to 38.

Results presented in Figure 4 illustrate the increase in the
active stiffening as feedback gainincreasesfor V; = 0.5, 1.1,
and 2%. The fundamental frequency is normalized with re-
spect to the frequency for n =4 and the corresponding device
volume-fraction at zero feedback gain (G = 0). As expected,
active stiffening (represented by the change in the normal-
ized system frequency) increases as the device volume-
fraction increases. Morethan a4% changein thefirst natural
frequency isachieved for n=4and V; = 2% at G =38 and the
corresponding electrical field at the actuator near the fixed
end (E;na) is 1000 V/mm.

Effect of Host Stiffness

Figure5illustratesthe dependence of thefundamental fre-
guency, and hencetheactive stiffening effect, onthe Young's
modulus of the host material for different feedback gains.
The fundamental frequency is normalized with respect to
that of the passive beam at zero feedback gain, and the host
stiffnessis varied from that of Alplex to that of aluminum.

The active stiffening effect rises sharply and then de-
creases with increasing host stiffness. This means that there
isan optimum valuefor the host stiffnessto maximize active
gtiffening. To understand the reason for this optimal host
stiffness, consider qualitatively, the host-actuator interac-
tions. When the host is very compliant, the strain caused by
theactuator doesnot cause alarge changeinthestrain energy
(and hence system frequency). As an extreme example, the
actuator strain would obviously have no effect if the host has
zerostiffness(air). Conversely, whenthehostisvery stiff, the
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Figure 4. Effect of increasing device density on active stiffening.
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Figure 5. Effect of host stiffness on active stiffening.

actuator lacksthe authority to produce large perturbationsin
the host strain field or host strain energy. Thus, stiffening ef-
fect decreasesin very stiff hosts. The optimum stiffening ef-
fect is therefore encountered in hosts of some intermediate
stiffness. The actual stiffness at which this optimum stiffen-
ing effect occurs, isdependent on system parameters such as
actuator stiffness, actuator voltage, beam geometry, bound-
ary conditions, actuator volume fraction, etc. That optimum
value for this structure occurs at host stiffness equal to 12
GPa, whichisabout 20% of the PZT device stiffness. There-
fore, choosing the proper host and device stiffnesses can
maximize active stiffening. Similar optimization can also be
achieved through the use of coatingsof appropriatestiffness.

Effect of Feedback Gain

Figure 6 demonstrates the effect of changing feedback
gain, on the FRF of the active beam. The plot shows active
gtiffening by shifting to a higher frequency due to the in-
creaseinthefeedback gain (G) from zeroto 38 at n=4and V;

0.025
0.02F " .
h
[
"‘!!.
Lili —n=4,V{=2%G=0
Z0.015 o - - n=4,Vi=2%G=19
E {1 | --n=4,vi=2%G=38
3
2
=
©
£ o001
0.005
o . . . . ; :
30 35 40 45 50 55 60 65

Frequency (Hz)
Figure 6. Effect of feedback gain on active stiffening (FRF).
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Figure 7. Effect of changing device location on active stiffening.

= 2%. The first natural frequency of the beam at zero feed-
back gainis43.41 Hz. Thisvalue increasesto 44.34 Hz and
45.24 Hz at G = 19 and 38, respectively. The percentage in-
creasein thefirst natural frequency at G = 38is4.2%, asde-
picted in Figure 4.

Effect of Device L ocation

Figure 7 showsthe changein the active stiffening effect as
afunction of devicelocation relative to the beam mid-plane.
Feedback gain, number of device-pairs, and device density
are al held constant. The fundamental frequency is normal-
ized with respect to that of the passive beam (G = 0) with the
appropriate device location. Device location is normalized
with respect to half of the beam thickness. Normalized de-
vice location (1) of 0.5 corresponds to devices located half
the distance between beam mid-plane and free surface. As
the devicesmove away from themid-plane, sensorsand actu-
ators achieve more sensitivity and authority, respectively.
However, the electrical field is directly proportional to the
distance from the beam mid-plane, and one should consider
itsvaluefor constant feedback gain to avoid any depoling of
the piezoceramic actuators.

Devices at |, = 0.25 are able to stiffen the beam by only
1.1%at E 5 = 500 V/mm, whiledeviceslocated half theway
from beam mid-plane (I, = 0.5) produce 4.2% active stiffen-
ing at E, = 1000 V/mm. At |, = 0.75 the beam stiffens by
8.7% at E e = 1500 V/mm.

EXPERIMENTAL VERIFICATION

An active cantilever beam wasfabricated in the Smart Ma-
terials and Structures Research Center (SM SRC) at the Uni-
versity of Maryland, College Park. Asshown in Figure 8, the
beam width is 25.4 mm, the length is 203.2 mm, and the
thicknessis 3.6 mm. Thepiezoel ectric devicethickness (in z-
direction) is 0.25 mm, the length (in y-direction) is 6.4 mm,
and the width (in x-direction) is 25.4 mm. Device location
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Figure 8. Dimensions of the fabricated active beam.

(Ip) is 0.29. Material properties of the host and the PZT de-
vicesaregivenin Tables1 and 2.

The experimental study of the active structure presented
in this research is different from most of the published ar-
ticles (Bailey and Hubbard, 1985; Crawley and de
Luis, 1987; Hagood, Flotow and Von, 1991). This is be-
cause sensors and actuators are relatively small in compari-
son to devices used by other researchers. Dimensions of
the piezoelectric elements are at least one order of magni-
tude less than the dimensions of the cantilever beam in y-
zplane, as shown in Figure 8. As mentioned before, the rea-
son for choosing small devices is to reduce the
obtrusivity and hence promote better structural integrity of
the device.

Thefirst two pairs of devices (apair denotes a sensor and
the corresponding actuator on the opposite side of the beam
neutral axis, as shown in Figure 2) from the fixed end are
used for active vibration control. Thethird pair isused to ex-
cite the beam during forced vibration tests. The amount of
strain (or voltage output) measured at the fourth pair is too
small for the cantilever configuration. Therefore, devices of
the fourth pair are not used in this setup. Nevertheless, this
pair could beuseful if the activebeamisused in other config-
urations like simply supported or fixed-fixed boundary con-
ditions.

An external piezoceramic element having the same di-
mensions as the embedded devicesis bonded to the external
surface of the beam 8 mm from the fixed end of the beam, as
shown in Figure 8. ThisPZT is used as a general sensor be-
cause interactions between stress fields of sensor and actua-
tor are ignored in the devel oped model.

The feedback system is shown in Figure 9 for the fre-
guency response test. It consists of voltage pre-amplifier

Table 1. Material properties of the host.

Table 2. Material properties of piezoceramic (PZT-5H).

Dielectric permittivity, &1, 301 (10710 F/m)

£ 130 (107° F/m)
el 277 (10710 F/m)
) 151 (1072° F/m)
Piezielectric strain coupling, ds; —274 (1072 m/V)
das 593 (10712 m/V)
dis 741 (10712 m/V)
Elastic compliance (@ constant E), Sf 16.5 (1072 m?/N)
S5 20.7 (1012 m2/N)
SE 43.5 (1012 m2/N)
SE —4.78(10712 m?/N)
SE —8.45 (10712 m2/N)
Density 7500 (Kg/m?®)

connected to the external PZT sensor. The pre-amplifier is
connected to a 3202 Krohn-Hite low-pass frequency filter to
filter out noises generated in the system.

Thesignal coming out of the frequency filter is sent totwo
different circuits leading to the actuators of the first and the
second device-pairs. Each loop is designed to condition the
signal beforeit goesto the actuator of the proper device-pair.
Thefrequency filter isconnected to two different phase shift-
ers. The phase shifter isused to adjust the phase between sen-
sor output voltage and the voltage sent to the actuator. The
phase shifter is adjusted manually at excitation frequency
equal to the first natural frequency of the beam. A Crown
Comp-Tech 400 power amplifier is connected to the
phase shifter to amplify the signal beforeit goesto each actu-
ator.

The experimental value of the feedback gain in each sen-
sor-actuator circuitiscomputed astheratio between the actu-
ator voltage V, and the sensor voltage V, (see Figure 9). The
alternate value of the sensor voltageisestimated from the ex-
ternal sensor asfollows,

Modulus of elasticity 2.4 (GPa)
Poisson’s ratio 0.3
Density 1200 (Kg/m?3)

Oscilloscope
Y /Y
Vst Vez
[-77] - T T
.V e Vo =g =
1 1 ]
Power Power
Amplifier Ampilifier
v ) [ Power
Pre- Differen-| [Differen-| Amplifier
Amplifier tiator tiator A
f f
Y Phase Phase Spectrum
Frequency Shifter Shifter Analyzer |«
Filter [ A

Figure 9. Experimental setup.
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VSOV

Vs = E e (30)

where Vg, is the sensor output in the passive beam (at zero
feedback gain), Vq, isthe corresponding output of the exter-
nal sensor (at zerofeedback gain), and Ve istheinstantaneous
output of the external sensor. Thus, (V¢/Veo) iStheempirical
calibration factor used to estimate the output of the embed-
ded sensors from the external sensor. The reason for this ap-
proximated approach is due to the limitation in the theoreti-
cal model in accounting for the interactions between sensor
and actuator.

Inforced vibrationtests, asweep sinusoidal voltage of am-
plitude of 5 V is generated using a Spectrum Analyzer
(HP 35665A). Thissignal isamplifiedto 120 V signal using
a power amplifier (Crown Comp-Tech 400), and applied
to the third pair. The two devices of the third pair are
driven 180° out-of-phase in order to drive the beam in pure
bending.

The frequency response is measured using the Spectrum
Analyzer which compares the voltage input to the devices of
the third pair, with the output voltage measured at the exter-
nal attached PZT sensor, asshown in Figure 9. Experimental
frequency response datais recorded by the digital Spectrum
Analyzer and then downloaded to a computer for analysis
and post-processing.

Time response is measured by connecting the external
PZT to an oscilloscope. The tip of the beam is given some
fixed initial displacement (r,) and the beamis allowed to vi-
brate under activevibration control. Thetimeresponse of the
active beamiscaptured by an oscilloscope (Nicolet 320 Dig-
ital Oscilloscope).

Inactivestiffening, theelectrical field applied to theactua-
tor is proportional to the sensor voltage. The electrical field
suppliedto each actuator is180° phase shifted with respect to
the electrical field generated by the sensor of that pair. In
principle, it ispossible to use sensors of thefirst two pairsas
additional actuators. However, because of mechanical inter-
action effects, only onedevice of each pair isused asan actu-
ator. Sincethe model does not account for the mechanical in-
teractions between opposite devicesin each pair, using them
simultaneously as actuators would make it difficult to com-
pare experimental results with analytical predictions.

Additional reasons for deviations between experimental
results and analytical predictions are the assumptions made
inthe model such as: perfect interfacial bonding conditionis
assumed in the model, the rectangular cross-section of the
devicesisapproximated to beelliptical with equivalent areas
intheanalytical model, the electrical lossesinthe system are
ignored inthemodel, thefinitedimensionsof thehostinthez
direction are considered very approximately in the
eigenstrain analysis, mechanical interactions between the
embedded devices areignored in the model, the sensor out-
puts are estimated in the experiment from the external PZT
sensor, and the nonlinearitiesinthematerial propertiesof the

devices have been ignored. Because of the difficultiesin ac-
counting for these approximations explicitly, a scalar cali-
bration coefficient (k) isassumedinthemodel to simulatethe
effects of the above simplificationsin themodel. Onecan es-
timate the value of the coefficient based on some simple ex-
perimentation. The beam is given aknown tip displacement
and the voltage output of an embedded sensor is recorded.
Sensor voltage output iscompared withtheanal ytical predic-
tion. The experimental valueis0.75 of the analytical predic-
tion. Thisimplies 25% loss at the sensor; in other words, the
sensor calibration coefficient (k) is0.75. Or the overall elec-
tro-mechanical efficiency of theembedded devicesis75%in
the static case.

Figure 10 shows a comparison between the experimental
andtheanalytical results. Thex-axisisthefeedback gain (G)
whereasthe vertical axisisthe normalized fundamental fre-
guency. The fundamental frequency is normalized with re-
spect to that of the passivebeam (G = 0). Experimental values
of the first frequency are obtained using frequency response
tests. Note that experimental resultsfor one (m= 1) and two
(m=2) active pairshave the same trend asthe analytical pre-
diction.

The calibration factor (k) in the model represents the
losses in energy transformation at the sensors and actuators.
In other words, the electrical energy generated at sensorsdue
tothedirect effect isonly 75% of thetotal available from the
applied mechanical energy. On the other hand, only 75% of
the total mechanical energy available from the applied elec-
trical energy at actuatorsistransferred to the host by the con-
verse effect. Therefore, since sensors and actuators have the
same working environment, their “efficiency” is assumed
to be 75%. Figure 10 shows comparisons between experi-
mental results and model predictions, assuming “losses’ of
25%.

The comparison between the experimental results and
model predictionsin time domainisgivenin Figure 11. The
y-axisisthe normalized external sensor output measured ex-

1.045 T T e T T T

1.04+
..1.035) == Anm=1,k=075 "
g ——An.m=2,k=075
% % Exp.m=1
g 1.03F + Exp.m=2 + % |
i
E]
£1.025¢ -
g .
o -
5 1.02f -
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9 T ¥ -7
21.015- e
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Z 101t *

+ *
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Figure 10. Comparison between analytical and experimental active
stiffening, assuming losses in the system.
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Figure 11. Comparison between analytical and experimental active
stiffening in time domain for two active pairs.

perimentally or predicted analytically. The solid line repre-
sents the experimental response of the beam, whereas the
dashed linegivestheanalytical response of thebeam. There-
sponseisgiven for two active pairs(m=2) at G = 66. Again,
the ability to achieve good agreement between experimen-
tally measured and analytically predicted response with use
of only one fixed scalar calibration factor (k = 0.75), illus-
trates the ability of the eigenstrain method to represent the
basi c mechanics of the active structure with embedded mini-
devices.

It isworth mentioning in closing that the small changein
the dynamic response is due to the small volume fraction of
the devices, which is only 0.22% for each actuator.

CONCLUSIONS

Analytical predictions based on Hamilton’s principle
are compared with experimental data for active stiffening
of a cantilever beam with embedded mini-actuators. The
mechanical interactions between the host and the devices
are modeled using an eigenstrain method. Active stiffen-
ing of the active beam was achieved experimentally by us-
ing constant-gain position-feedback control. This pa
per demonstrates the ability of eigenstrain methods to
successfully model active structures containing mini-
devices.
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APPENDI X

Eshelby’s fourth-order concentration tensor S;q for uni-
form field is given as,

$1 )= gz = ALY ) 1 () +a71y V)
+ (0 Oy + Q)[ajzhj(}) = HL =91 (A H (A]]
(A

wherev isPoisson’ ratio of the matrix, §;; is Kronecker delta,
ai arethe semi axesof theellipsoid inclusion. Integralsl; and
l;; are defined as follow:

ds

“@):Zﬂabgmﬁjﬁifi5ﬂéi (A2)
IMM=2mmﬂd%T@F+$;§ (A3)
a“ +9)A(s)
where A(s) is defined as,
A(9) = (et +9)(aF +9)(ad +9 (A%)
and \ i the largest positive root of
B LN (A5)

ai’+ A

for exterior points (in the host), and A = O for interior points
(insideinclusion). The above I-integrals can be expressed in
terms of standard elliptic integrals (Moschovidis, 1975).
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