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Eigenstrain Techniques for Modeling Adaptive Structures:
II. Active Damping

ABDULMALIK A. A. ALGHAMDI1,* AND ABHIJIT DASGUPTA2

1Department of Production Engineering and Mechanical Systems Design, King Abdulaziz University, Jeddah 21413, Saudi Arabia
2Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

ABSTRACT: This is the second paper, in a two-part series, that demonstrates the utility of
Eshelby’s eigenstrain techniques for modeling adaptive structures. The first paper addressed
adaptive stiffening (Alghamdi and Dasgupta, 2000). The objective of this second paper is to model
adaptive damping. Distributions of small active piezoceramic devices embedded in the adaptive
structure are treated as elastic heterogeneous inclusions. Sensors are treated as elastic heterogeneities
subjected to external loads, whereas actuators are modeled as elastic heterogeneities subjected to
both external loads and internal induced strains caused by the converse piezoelectric effect. The cou-
pled electromechanical boundary value problem is solved using a generalized form of Hamilton’s
principle where the energy functional is evaluated using the eigenstrain method. System dynamic
equations are developed for active damping and a numerical solution to the variational problem is ob-
tained by using the Raleigh-Ritz approach. Numerical results are verified experimentally using a can-
tilever beam with distributions of embedded piezoelectric (PZT-5H) mini-devices. A significant
amount of damping is achieved for low volume fraction of devices and good agreement is obtained
between numerical and experimental results. The eigenstrain technique is demonstrated to be a capa-
ble three-dimensional tool for modeling adaptive structures with embedded distributions of
mini-devices.
INTRODUCTION

A
N adaptive structure can be defined as a system that has
the capability of sensing a stimulus and responding to it

in an appropriate fashion. So, the concept pre-supposes that
the structure has sensors, actuators and logic controllers. De-
velopments in the area of adaptive material systems and
structures have resulted in significant theoretical and experi-
mental investigations of adaptivity phenomena. Adaptive
structures have been used in different areas such as vibration
control (Baz and Ro, 1995), rotorcraft (Chen and Chopra,
1996), aircraft structures (Crawley, 1994), structural dynam-
ics (Chandrashekhara and Bhatia, 1993), robotics (Yoshida,
Nenchev and Uchiyama, 1999), civilian structures (Soh et
al., 2000), biomechanics (Kupchinov et al., 1993), etc.

Several active materials have been used in adaptive struc-
tures including, piezoelectrics, shape memory alloys,
electrostrictives and magnetostrictives. However, piezoelec-
tric materials have attracted significant attention for their po-
tential application as sensors and actuators for controlling
the response of active structures, mainly because of their
moderate actuation authority, high frequency response and
ease of control.

Most of the current adaptive structure applications utilize
fairly large devices, compared to the characteristic length
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scale of the host structure, in order to achieve adequate au-
thority. The obtrusivity of such large devices is known to
cause local perturbation of stress and strain fields in the host,
thus creating the possibility of initiating local damage and
compromising the structural integrity of the devices. One
possible way to minimize the obtrusivity is to reduce the size
of the devices, to distribute them throughout the volume of
the host, and to increase their number as required, to achieve
the desired authority. Distributing the devices throughout the
volume also provides certain advantages from the perspec-
tive of distributed control strategies. However, embedding of
small devices produces three-dimensional stress interactions
that are more difficult to model than those arising in sur-
face-mounted devices and there is a lack of generic modeling
techniques for such structures in the open literature.

There have been numerous studies in the literature for
modeling mechanical interactions between devices (sen-
sor/actuator) and host in adaptive structures. The interaction
mechanics of active elements in adaptive structures have
been analyzed by using simple beam models (Bailey and
Hubbard, 1985), pin force models (Crawley and de Luis,
1987), large deformation beam theory (Im and Atluri, 1989),
laminate analysis (Crawley and Lazarus, 1991), nonlinear
analysis (Pratt, Queine and Nayfah, 1999), and one-dimen-
sional eigen-function approximations (Lin and Rogers,
1992). Other numerical approximation methods have also
been developed to model the coupled boundary value prob-
lems in active structures. These include finite element meth-
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632 ABDULMALIK A. A. ALGHAMDI AND ABHIJIT DASGUPTA
ods (Allik and Hughes, 1970; Mahut, Agbosou and Pastor,
1998), Rayleigh Ritz methods (Hagood, Chung and Flotow,
1990) and strain energy methods (Wang and Rogers, 1991;
Chee, Tong and Steven, 1998). In this paper, the mechanical
interaction between the devices and the host is modeled us-
ing eigenstrain analyses that have been introduced in a previ-
ous paper (Alghamdi and Dasgupta, 2000). The volume frac-
tion (Vf) of these devices is less than 2% of the structure
volume.

The equivalent-inclusion technique (Eshelby, 1957) is a
powerful and unified solution method capable of solving the
elastic problem of an anisotropic heterogeneity inside an iso-
tropic, infinite matrix. This method is brought to adaptive
structures to model the elastic interaction between actua-
tors/sensors and the host, by using appropriate Green’s func-
tions. The energy formulation of the eigenstrain method is
made possible by adapting a generalized Hamilton’s princi-
ple, and numerical solutions are obtained using the Ray-
leigh-Ritz technique.

A one-dimensional beam problem is investigated both an-
alytically and experimentally and the adaptivity of the beam
is illustrated through active damping of a cantilever beam,
using velocity feedback control. Experimental verification
of the analytical model is presented for a cantilevered Alplex
beam containing distributions of small, embedded PZT-5H
sensor/actuator mini-devices.

ANALYSIS

An adaptive structure with multiple embedded mini-de-
vices is modeled as a large elastic matrix with embedded el-
lipsoidal elastic heterogeneities, as shown in Figure 1. Host
and device materials are approximated to be isothermal, lin-
ear and mechanically isotropic. Although the eigenstrain
techniques can handle any coupled-energy problem, only an
electro-mechanical energy problem with piezoelectric mate-
rial for the devices is being formulated here.
Figure 1. Active structures.
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The mechanical, electro-mechanical and electrical energy
of the adaptive structure are computed using a generalized
form of Hamilton’s principle (Tiersten, 1969),

(1)

where L is the Lagrangian functional, which is the difference
between the kinetic energy and the electric enthalpy; d is the
variational operator; W is the external work term; and (t0, t)
defines the time interval over which stationary values are
sought.

The linearized, isothermal, coupled, electro-mechanical
constitutive model for piezoelectric structures is given by
(Ikeda, 1990)

(2)

(3)

where sij is the stress tensor, Di is the electrical displacement
vector, εkl is the strain tensor, Ek is the electrical field vector,
Cijkl is the mechanical stiffness tensor evaluated at constant
(zero) electrical field, eijk is the piezoelectric stress coupling
tensor, and is the dielectric permittivity tensor evaluated
at constant (zero) strain.

Taking the first variation inside the volume and surface
integrals with respect to the primary variables (displacement
ui and potential V) one can get,

(4)

where r is the density, v is the volume of the beam, W is the
volume of the devices, Q is the specified surface charge den-
sity and S is the electrode surface area of the devices. This is
the electro-mechanical variational equation governing the
adaptive structure consisting of the host and embedded pi-
ezoelectric devices. The integration domain in the above
equation covers the host, sensors, and actuators.

The eigenstrain technique is applied to obtain the elastic
interaction fields, both in the host and the devices, under in-
ternal actuation load (in the actuator, due to piezoelectricity
effect) and external applied loads (Dasgupta and Alghamdi,
1993). The eigenstrain method for modeling the disturbance
field is based upon modeling the heterogeneity problem as an
equivalent inclusion in a homogeneous media with a ficti-
tious eigenstrain prescribed in the inclusion, so as to pro-
duce the same stress field in W as the original heterogeneity,
under both external loads and internal actuation strains. The

0 0
0

t t

t t
Ldt Wdtd d+ =∫ ∫

ij ijkl kl kij kC e Es e= −

s
i ikl kl jijD e Ee e= +

s
ijε

0

0

t
i i ij ijkl kl ij kij kt v v

ij kij k i ij j s

u u dv C dv e E dv

e E dv E E dv Q VdA dt

Ω

Ω Ω

 ρδ + ε δε − ε δ

− δε − ε δ − δ =

∫ ∫ ∫ ∫

∫ ∫ ∫

��

f
ijε
 r commercial use or unauthorized distribution.
IV OF MARYLAND on January 25, 2007 

http://jim.sagepub.com


Eigenstrain Techniques for Modeling Adaptive Structures: II. Active Damping 633

Figure 2. Schematic drawing of the adaptive cantilever beam.
stress inside the heterogeneity is written, using Hooke’s law
as,

(5)

where and superscript d on the stiffness indi-
cates the device, and superscripts 0, /, a, *, f and p on the
stress and strain terms indicate applied far-field value; dis-
turbance due to the presence of the heterogeneity and the in-
duced strain; induced strain inside the actuator; total
eigenstrain; fictitious eigenstrains due to external load; and
the applied eigenstrains due to the induced strain; respec-
tively. Details of these terms can be found in Alghamdi
(1995).

The mechanical strain inside the devices can be calculated
as,

(6)

where Sijkl is Eshelby’s fourth-order strain concentration ten-
sor (Alghamdi and Dasgupta, 2000). Note that the total strain
in Equation (6) is the strain inside the actuator, and consists
of two parts, the far-field strain and the eigenstrain. In this
analysis, both sensors and actuators have a fictitious
eigenstrain due to the external far-field loads, while the actu-
ators have additional real eigenstrains due to the converse ef-
fect of the actuation voltage.

For the media (host) only the far-field strain is considered,
while for sensors far-field strain is considered in addition to
the fictitious eigenstrain (i.e., there is no applied eigenstrain:

The real eigenstrains due to the direct piezoelectric
effect at the sensor and actuator are ignored because of their
negligible magnitude in comparison to that associated with
the converse piezoelectric effect due to the excitation volt-
age.

The elastic energy term in Equation (4) can be written in
terms of the eigenstrain as (Alghamdi and Dasgupta, 1993a),

(7)

where Equation (7) gives the strain en-
ergy of adaptive structure with multiple embedded devices
subjected to uniform far-field and uniform applied strain in
actuators. Note that the total strain energy can be obtained
without solving the perturbation introduced in the host by the
mechanical field in the heterogeneity. Uniform and linear
far-field and applied eigenstrain loadings have been investi-
gated by Alghamdi and Dasgupta (1993b).
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RAYLEIGH-RITZ APPROXIMATION

In this section the dynamic behavior of a sample adaptive
structure is presented by implementing the variational
scheme given above with the eigenstrain analysis. The adap-
tive structure selected for this study is a cantilever beam
made of Alplex plastic with embedded piezoceramic devices
(see Figure 2). The beam contains two rows of uniformly
spaced mini-devices arranged symmetrically with respect to
the neutral plane. One row contains all sensors and the other
contains all actuators. The analysis presented in this paper is
not limited to this type of structure, but it can be used to
model any structure by assuming appropriate displacement
functions. For illustrative purposes, only the first vibrational
mode is considered.

As the beam flexes, the sensor outputs are used in a
closed-loop constant-feedback-gain control circuit to acti-
vate the corresponding actuator on the opposite side of the
neutral axis. If the voltage supplied is made proportional to
the sensor output voltage, then the result is an apparent stiff-
ening of the structure with an accompanying increase in the
natural frequency (Alghamdi and Dasgupta, 2000). If the in-
put voltage is made proportional to the time-derivative of the
sensor output voltage (actuation strain is made proportional
to the bending strain rate), then the result is an apparent adap-
tive damping of the structure.

For simplicity, we assume a Euler-Bernoulli cantilever
beam, no rotary inertia, perfect bond condition, and no elec-
trical losses. In accordance with Rayleigh-Ritz techniques,
the transverse displacement function (w) for the first vibra-
tional mode for the cantilever beam is assumed to be sinusoi-
dal in the y-z plane:

(8)

where t is time, the y-axis is oriented along the length of the
beam (see Figure 2), l is the beam length, and r(t) is a general-
ized mechanical degree-of-freedom representing the tip dis-
placement. For simplicity, sinusoidal function is selected to
provide an approximate shape of the beam deflection. How-
ever, generic beam functions can be used to get better ap-
proximation of the beam deflection (Gartner and Olgac,
1982). The displacement field in Equation (8) is used as the

( , ) 1 cos ( )
2

y
w y t r t

l
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Table 1. Material properties of the host.

Modulus of elasticity 2.4 (GPa)
Poisson’s ratio 0.3
Density 1200 (Kg/m3)

Table 2. Material properties of piezoceramic (PZT-5H).

Dielectric permittivity, 301 (10-10 F/m)

130 (10-10 F/m)

277 (10-10 F/m)

151 (10-10 F/m)

Piezoelectric strain coupling, d31 -274 (10-12 m/V)

d33 593 (10-12 m/V)

d15 741 (10-12 m/V)

Elastic compliance (@ constant E), 16.5 (10-12 m2/N)

20.7 (10-12 m2/N)

43.5 (10-12 m2/N)

-4.78 (10-12 m2/N)

-8.45 (10-12 m2/N)

Density 7500 (kg/m3)

ε33
T

ε33
S

ε11
T

ε11
S

11
ES

33
ES

44
ES

12
ES

13
ES
far-field boundary condition, for the eigenstrain analysis
in Equation (7).

By assuming uniform electrical field in the sensor, the de-
rivative of the sensor voltage can be written in terms of the
assumed displacement function (Alghamdi, 1995)

(9)

where h3ij is the piezoelectric voltage-strain coupling tensor,
qij is the constant solution tensor (see Alghamdi, 1995), zm

and ym are the coordinates of the mid-point of the sensor and
ts is the sensor thickness.

The electrical voltage applied at the surface of the actuator
is proportional to the derivative of the sensor potential (Vs)

(10)

where G is the constant feedback gain. Substituting Equa-
tions (6) and (7) into Equation (4) and allowing arbitrary
variation of r(t) and V(t), one obtains the following set of
equations for the system,

(11)

(12)

where M, Kp, Cp, Ca, and Sa are the mass, stiffness, passive
structural damping, active electro-mechanical damping, and
capacitance, respectively, and q is the applied charge at the
surfaces of the actuators. Details of these terms can be found
in Alghamdi (1995).

The value of V(t) in the actuator equation [Equation (11)]
is calculated using Equations (9) and (10). The sensor equa-
tion [Equation (12)] relates the applied voltage and the me-
chanical displacement rate to the surface charges.

Substituting Equations (9) and (10) into Equation (11),

(13)

where GT is the total feedback gain representing feedback
gain (G) and the appropriate piezoelectric coupling coeffi-
cient.

For harmonic motion, the magnitude of the frequency re-
sponse function (FRF) of the system is

(14)

The phase shift of the FRF is given by

(15)

where w is the angular excitation frequency.

2

32
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ANALYTICAL RESULTS

The goal of this simple dynamic analysis is to show the ca-
pability of eigenstrain techniques to model the response of
active structures, in particular active damping. The active
term (Ca) in Equation (13) acts as an adaptive damping term
because feedback voltage V(t) is made proportional to the
strain rate measured by sensors. Adaptive damping is inves-
tigated for a variety of parametric changes, including varia-
tion of number of devices, device size, host stiffness, feed-
back gain, device position with respect to beam mid-plane
and device shape. Material properties of the host and the PZT
devices are given in Tables 1 and 2.

Figure 3 shows the dimensions of the adaptive beam mod-
eled in this study. Unless otherwise stated, the following is
assumed: (1) Maximum number of device-pairs (n) is four;
(2) maximum device density is 2%, in order to minimize the
mechanical interactions between the devices; (3) each device
is placed halfway between the mid-plane and the free sur-
face; 4) maximum feedback gain (G) is 20 and the corre-
sponding electric field at the first pair is 526 V/mm, to avoid
nonlinear response and PZT depoling; and (5) device aspect
ratio (a2/a3) is eight. The change in the peaks of the fre-
quency response function of the damped system in frequency
domain, along with decay envelopes and damping time are
presented as measures of active damping.

Effect of Number of Device-Pairs

In Figure 4, decay envelopes are plotted at constant feed-
back gain (G = 19) for different values of device-pairs (n = 0,
 r commercial use or unauthorized distribution.
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Figure 3. Dimensions of the modeled adaptive cantilever beam.
Figure 5. Effect of increasing number of device-pairs on adaptive
damping in frequency domain.
2, 4), and the corresponding volume fractions are 0, 0.5 and
2%. For n = 1, the first device-pair from the fixed end is acti-
vated. The solid line represents the decay envelope of a con-
ventional beam with no embedded devices. The adaptive
beam damps faster as the number of device-pairs increases.
Figure 5 shows the frequency response function (FRF) of the
adaptive beam with n = 0, 2 and 4. The peak amplitude of the
magnitude of FRF decreases as the number of active de-
vice-pairs increases. The shift in the location of the first reso-
nance peak is attributed to the changes in the system dynamic
variables (stiffness and mass). In Figure 6, adaptive damping
is represented in terms of the normalized time-to-damp (td)
vs. the number of device-pairs. Time-to-damp is defined in
this paper as the time required for the tip displacement to
drop to 1% of the applied initial condition. The time-to-damp
of the active beam is normalized with respect to the
Figure 4. Effect of increasing number of device-pairs on adaptive
damping.

© 2000 SAGE Publications. All rights reserved. Not fo
 at UNhttp://jim.sagepub.comDownloaded from 
time-to-damp of a passive beam with zero gain (G = 0). As
expected, the rate of change in time-to-damp decreases as n
increases, because the authority of additional device pairs
decreases as the distance from the fixed end increases.

Effect of Device Density

Figures 7 and 8 represent adaptive damping for different
device densities achieved by changing device size while the
number of active device-pairs (m) is held constant (n = 4). In
Figure 7, the time response is given as a function of the de-
vice volume fraction at constant feedback gain. Adaptive
damping improves as the device volume-fraction increases,
in a nonlinear way, as shown in Figure 8. The rate of change
of td, with respect to Vf, increases up to Vf = 0.8% and then de-
creases with increasing Vf. This is due to both the nature of
Figure 6. Relationship between time-to-damp and number of de-
vice-pairs.

 r commercial use or unauthorized distribution.
IV OF MARYLAND on January 25, 2007 

http://jim.sagepub.com


636 ABDULMALIK A. A. ALGHAMDI AND ABHIJIT DASGUPTA

Figure 7. Effect of increasing of device density on adaptive damp-
ing.

Figure 9. Time-to-damp as a function of host stiffness.
the damping process and the increase in device volume-frac-
tion.

Effect of Host Stiffness

The effect of changing host stiffness on adaptive damping
is shown in Figures 9 and 10. The host stiffness is changed
from that of Alplex to that of aluminum while other variables
are held constant. Adaptive damping increases, and then de-
creases, with increasing host stiffness. Similar to adaptive
stiffening (Alghamdi and Dasgupta, 2000), there is an opti-
mum host stiffness value for which adaptive damping is
maximum, and it is 22 GPa for the beam considered in this
paper, as shown in Figure 9. Similarly, the electrical field at
Figure 8. Time-to-damp as a function of device density.

© 2000 SAGE Publications. All rights reserved. Not fo
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the actuator of the first device-pair (Emax), which is propor-
tional to the strain rate at the sensor of the first device-pair,
increases from 263 V/mm at host stiffness 2.4 GPa to 1029
V/mm at 34 GPa, then decreases to 779 V/mm at host stiff-
ness of 72 GPa, as shown in Figure 10.

Effect of Feedback Gain

Figures 11 and 12 show the effect of feedback gain (G) on
adaptive damping. The decrease in the first resonance ampli-
tude, which is a measure of adaptive damping, is shown in
Figure 11 for G = 0, 10 and 20. The phase shift is shown in
Figure 12. In both figures, there is no shift in the first natural
frequency of the system as the feedback changes from 0 to
Figure 10. Electrical field at the actuator of the first device-pair
(Emax) as a function of host stiffness.
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Figure 11. Effect of feedback gain on adaptive damping in fre-
quency domain (magnitude).

Figure 13. Time-to-damp as a function of device shape.
20, because there is no change in either mass or stiffness of
the system.

Effect of Device Shape

Figure 13 illustrates the effect of changing the device
shape on adaptive damping. Changing the aspect ratio a2/a3
changes device shape, where a2 and a3 are the device semi
axes. It is seen in this figure that increasing the aspect ratio
helps to damp the system faster, because actuators, as well as
sensors have more authority at higher aspect ratios. How-
ever, as the aspect ratio increases, the time-to-damp de-
creases and reaches some saturation value. The role of the as-
pect ratio is fairly limited beyond this value.
Figure 12. Effect of feedback gain on adaptive damping, in fre-
quency domain (phase).

© 2000 SAGE Publications. All rights reserved. Not fo
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Effect of Device Location

Finally, the effect of device location on adaptive damping
is investigated in Figure 14 by changing the distance of the
device centerline from the beam mid-plane. Time-to-damp is
normalized with respect to that of a passive beam with de-
vices not activated. As expected, moving devices away from
beam mid-plane improves systems adaptive damping be-
cause of the increase in the device authority. Normalized de-
vice location from beam mid-plane is donated by lo. For lo =
0.3, sensor and actuator are closer to the beam mid-plane and
their ability to damp the beam is minimal. As the centerline
of the device moves to half the distance between mid-plane
and the free surface (lo = 0.5), the capability of the actuators
to damp the beam improves. However, as the embedded de-
Figure 14. Time-to-damp as a function of device location.

 r commercial use or unauthorized distribution.
IV OF MARYLAND on January 25, 2007 

http://jim.sagepub.com


638 ABDULMALIK A. A. ALGHAMDI AND ABHIJIT DASGUPTA
vices reach the free surfaces, the free effect of the boundary
has to be addressed. In other words, the assumption of
mini-devices in an infinite matrix breaks down. In such a sit-
uation the Green’s functions in the eigenstrain method need
to be modified.

EXPERIMENTAL VERIFICATION

Experimental verification of the eigenstrain models devel-
oped above is presented in this section. An adaptive cantile-
ver beam was fabricated. Figure 15 shows the dimension of
the beam, as well as the dimensions of the embedded devices.
Device location (lo) is 0.29. Material properties of the host
and the PZT devices are given in Tables 1 and 2. Method of
fabrication of this adaptive beam can be found in Alghamdi
(1995). The beam has four built-in device-pairs (n = 4). Each
pair consists of a sensor and actuator. So, in principle it is
possible to activate all of these pairs, i.e. m = 4.

As mentioned before, the reason for choosing small de-
vices is to reduce the obtrusivity and hence promote better
structural integrity of the device. Thus, the experimental
study of the active structure presented in this paper is differ-
ent from most of the published articles, see for example
(Crawley and de Luis, 1987; Baz and Ro, 1995). This is be-
cause sensors and actuators are relatively small, in compari-
son to devices used by other researchers. Dimensions of the
piezoelectric elements are at least one order of magnitude
less than the dimensions of the cantilever beam in the y-z
plane, as shown in Figure 15.

Only the first two pairs of devices in Figure 15 from the
fixed end are used for active vibration control, while the third
pair is used to excite the beam during forced vibration tests.
Devices of the fourth pair are not used in this setup, because
the amount of strain (or voltage output) measured at the
fourth pair is too small for the cantilever beam configuration.
Nevertheless, this pair could be useful if the active beam is
used in other configurations like simply-supported or
fixed-fixed boundary conditions. An external piezoceramic
Figure 15. Dimensions of the fabricated adaptive beam.
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element having the same dimensions as the embedded de-
vices is bonded to the external surface of the beam 8 mm
from the fixed end of the beam, as shown in Figure 15. This
PZT is used as a general sensor because interactions between
stress fields of sensor and actuator were encountered in ex-
perimental work while ignored in the developed model.

The feedback system is shown in Figure 16 for the fre-
quency response test. It consists of a voltage pre-amplifier
connected to the external PZT sensor. The pre-amplifier is
connected to a 3202 Krohn-Hite low-pass frequency filter, to
filter out noises generated in the system. The signal coming
out of the frequency filter is sent to two different circuits
leading to the actuators of the first and the second de-
vice-pairs. Each loop is designed to condition the signal be-
fore it goes to the actuator of the proper device-pair. The fre-
quency filter is connected to two different phase shifters. The
phase shifter is used to adjust the phase between sensor out-
put voltage and the voltage sent to the actuator. The phase
shifter is adjusted manually at an excitation frequency equal
to the first natural frequency of the beam.

A differentiator is connected to the phase shifter to make
the applied electrical field in the actuator proportional to the
sensor output voltage rate. A Crown Comp-Tech 400 power
amplifier is connected to the differentiator to amplify the sig-
nal before it goes to each actuator.

The experimental value of the feedback gain in each sen-
sor-actuator circuit is computed as the ratio between the actu-
ator voltage Va and the sensor voltage Vs (Alghamdi and
Dasgupta, 2000). In forced vibration tests, a sweep sinusoi-
dal voltage of amplitude of 5 V is generated using a Spectrum
Analyzer (HP 35665A). This signal is amplified to 120 V us-
ing a power amplifier (Crown Comp-Tech 400), and applied
to the third pair. The two devices of the third pair are driven
180° out-of-phase in order to drive the beam in pure bending.

The frequency response is measured using the Spectrum
Analyzer which compares the voltage input to the devices of
the third pair, with the output voltage measured at the exter-
Figure 16. Experimental setup for forced vibration tests.
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Figure 18. Effect of increasing feedback gain on experimental
adaptive damping in frequency domain.
nal attached PZT sensor, as shown in Figure 16. Experimen-
tal frequency response data is recorded by the digital Spec-
trum Analyzer and then downloaded to a computer for
analysis and post-processing. Time response is measured by
connecting the external PZT to an oscilloscope while no volt-
age is applied to the devices of the third pair. The tip of the
beam is given some fixed initial displacement (ro) and the
beam is allowed to vibrate under active vibration control.
The time response of the active beam is captured by an oscil-
loscope (Nicolet 320 Digital Oscilloscope).

In active damping, the electrical field applied to the actua-
tor is proportional to the rate of the sensor voltage. The elec-
trical field supplied to each actuator is 180° phase shifted
with respect to the electrical field generated by the sensor of
that pair. In principle, it is possible to use sensors of the first
two pairs as additional actuators. However, because of me-
chanical interaction effects, only one device of each pair is
used as an actuator. Since the model does not account for the
mechanical interactions between opposite devices in each
pair, using them simultaneously as actuators would make it
difficult to compare experimental results with analytical pre-
dictions.

Figure 17 illustrates experimental measurements of the
free vibration of the adaptive beam in time domain. The fig-
ure shows the effect of increasing feedback gain on the ex-
perimental time response at constant active pairs (m = 2). As
expected, the beam damps faster as the feedback gain in-
creases from 0 to 58 (at G = 58 the corresponding electrical
field is 180 V/mm which is way below the depoling value).
The frequency of vibration remains relatively unaltered in
comparison to adaptive stiffening (Alghamdi and Dasgupta,
2000). The experimental frequency response (forced vibra-
tion) of the adaptive beam is shown in Figure 18. In this fig-
ure, the x-axis is the sweep excitation frequency in Hz and the
vertical axis is the ratio between the output voltage of the
Figure 17. Effect of increasing feedback gain on experimental
adaptive damping in time domain.
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external PZT sensor and the excitation voltage at the de-
vices of the third pair. Unlike the time domain response,
number of active pairs (m) is being changed at constant gain
(G = 174, E = 530 V/mm). The location of the first resonance
remains relatively constant at 24.50 Hz. Adaptive damping is
illustrated by the decrease in the peak amplitude of the FRF.
The contribution of the second pair is less than that of the first
pair because the latter one has more authority for the cantile-
ver beam configuration. The heat generated in the PZT actu-
ators is minimal because the excitation frequency is always
less than 30 Hz, both in the forced and free vibration tests. In
other words, since the aim is to control the response of an
adaptive beam having first natural frequency approximately
25 Hz, the heat generated at this frequency will be dissipated
to the structure at an acceptable rate. There was no visual or
apparent change in the temperature of the adaptive beam due
to the excitation of the PZT actuator. However, for higher ex-
citation frequency, above 100 Hz, one should account for the
heat generated in PZT to avoid matrix softening and/or deg-
radation of piezoelectricity effect.

Some deviation between experimental results and analyti-
cal predictions is acceptable, due to the simplifying assump-
tion made in the model, such as: perfect interfacial bonding
condition is assumed in the model, the rectangular cross sec-
tion of the devices is approximated to be elliptical with
equivalent areas in the analytical model, the electrical losses
in the system are ignored in the model, the finite dimensions
of the host in the z direction are considered very approxi-
mately in the eigenstrain analysis, mechanical interactions
between the embedded devices are ignored in the model, the
sensor outputs are estimated in the experiment from the ex-
ternal PZT sensor, and the nonlinearities in the material
properties of the devices have been ignored. Because of the
difficulties in accounting for these approximations explic-
itly, a scalar calibration coefficient (k) is assumed in the
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Figure 19. Comparison between analytical and experimental adap-
tive damping, represented by the percentage reduction resonance
peak amplitude, assuming losses in the system.

Figure 21. Comparison between analytical and experimental adap-
tive damping for m = 1, in time domain.
model to simulate the effects of the above simplifications in
the model. One can estimate the value of the coefficient
based on some simple experimentation. The beam is given a
known tip displacement and the voltage output of an embed-
ded sensor is recorded. Sensor voltage output is compared
with the analytical prediction. The experimental value is
75% of the analytical prediction. This implies that the overall
electro-mechanical efficiency of the embedded devices is
75% in the static case.

Figure 19 gives a comparison between the analytical and
experimental frequency response results for m = 1 and m = 2.
The adaptive damping is measured as the percentage reduc-
tion in the peak amplitude of the first resonance, and it is plot-
ted against the feedback gain (G). The experimental values
Figure 20. Comparison between analytical and experimental
time-to-damp, assuming losses in the system.
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of the feedback gain are the ratios between the applied volt-
age at the actuator and the corresponding sensor voltage, as
estimated by equation 16 in Alghamdi and Dasgupta (2000).
In this plot, the analytical results are scaled down by the em-
pirical correction factor k = 0.75.

Figure 20 shows a comparison between the experimental
time-to-damp and the analytical prediction for m = 1 and 2, at
different gains (assuming a correction factor k = 0.75). Rea-
sonable agreement is obtained in the relative trends. The
comparison between the experimental results and model pre-
dictions in time domain is given in Figure 21. The y-axis is
the normalized external sensor output measured experimen-
tally or predicted analytically. Analytical and experimental
time responses are given for m = 1 and G = 43 (E = 130
V/mm). The solid line represents the analytical passive de-
cay envelope, whereas the dashed line is the analytical decay
envelope for m = 1, G = 43 and k = 0.75. The dotted line is the
normalized sensor voltage representing the displacement of
the beam. Again, the ability to achieve good agreement be-
tween experimentally measured and analytically predicted
response with use of only one fixed scalar calibration factor
(k = 0.75) illustrates the ability of the eigenstrain method to
represent the basic mechanics of the active structure with
embedded mini-devices.

It is worth mentioning in closing that significant tuning in
the damping behavior of the adaptive beam was achieved us-
ing a small volume fraction of the devices (which is only
0.22% for each actuator).

CONCLUSIONS

This paper, along with a previous one (Alghamdi and
Dasgupta, 2000) in this two-part series, has demonstrated for
the first time a unified approach, based on eigenstrain tech-
niques, for modeling the mechanics of distributions of
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mini-devices embedded in an electromechanical smart struc-
ture. Sensors are treated as elastic heterogeneities subjected
to external loads, while actuators are treated as elastic
heterogeneities subjected to both external loads and internal
induced strain caused by the converse piezoelectric effect.
The Hamilton energy functional of the adaptive structure is
evaluated using an appropriate variational scheme. Numeri-
cal results, using the Raleigh-Ritz scheme, show the capabil-
ity of eigenstrain techniques to capture the physics of adap-
tive damping under a variety of parametric changes such as
gain factor and device densities. The trends predicted by the
proposed models provide reasonable qualitative agreement
with the experimental results. By assuming a scalar empiri-
cal calibration factor, fair agreement is obtained between an-
alytical prediction and experimental results.
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