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unified method to address both the sensors and the
i ﬂ_msa actuation strains. The advantages

Structure consisting of a simply supported

% peam with embedded arrays of saicrodevices Preliminary analytical results for piezoelectric devices
** embedded in an isotropic host provide important clues regarding the change in the vibrational

characteristics of the structure. Eshelby’s methods also help to estimate the strain concentration
factor in the host due to the presence of the embedded devices, and provide important inputs for
designing a reliable adaptive structure. '

L. INTRODUCTION

and actuators, which are termed the active elements, for the purpose of this discussion. Sensors or
actuators are either bonded to the structure or embedded within the structure. The possible
applications of adaptive structures include space stations, aircraft structures, rotorcraft, satellites,

robots, automobiles, civil and marine structures, and bioengineering structures.

There have been numerous studies in the literature for modeling the interactions between
devices and hosts in smart structures. For example, the response of adaptive structures with
laminated assemblies of piezo-electric wafers/films in composite beams have been analyzed by pin
force models [Crawley and de Luis, 1987; Lin and Rogers, 1992], simple beam models [Bailey and
Hubbard, 1987; Crawley and Lazarus, 1991}, large deformation beam theory [Im and Atluri, 1989],
laminate analysis [Crawley and Lazarus, 1991], and small-deformation as well as large-deformation
one-dimensional eigen-function approximations [Lin and Rogers, 1992;Crawley and de Luis; 1987].
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Embedded cylindrical devices such as fiber optic sensors have been analyzed using displacement
function methods [Sirkis, 1993; Dasgupta and Sirkis, 1992; Carman and Reifsnider, 1992; Pak, 1992].
Variational methods have also been developed for solving the coupled boundary value problems in
adaptive structures. These include the Rayleigh Ritz method [Hagood et al, 1990), finite element
methods [Allik and Hughes, 197 . Tzou and Tseng, 1990; Ha et al, 1991; Robbins and Reddy, 1991],
and a strain energy method [Wang and Rogers, 1991]. Most of these models address situations
where the size of the device is of the same length scale as the surrounding host structure. The focus
of the present paper is on microscale devices which are small compared to the characteristic
dimensions of the host. '

In this paper we summarize recent results from previous work on modeling the interaction
mechanics between embedded microdevices and the host structure using Eshelby’s "equivalent -
inclusion method" for modeling the perturbation of a uniform applied far field strain, by an
ellipsoidal inhomogeneity. Also, the equivalent inclusion method provides enough information about
the possibility of nucleating damage in the device, or in the host, or at the interface, due to stress
concentrations under external or internal loads. This method is illustrated here for the dynamic
behavior of a simply supported beam made of ALPLEX plastic containing two rows of devices. The
system equation of motion is solved and the Rayleigh quotient is used to study the change in the
natural frequency of the structure due to harmonic excitation of the actuators.

2. PROBLEM STATEMENT

As shown schematically in Figure 1, two rows of uniformly spaced micro-devices are assumed
to be embedded in the beam at a distance d/2 symmetrically about the neutral plane of the beam.
In order to investigate the influence of the devices on the vibrational characteristics of the beam, the
change in the natural frequency of the beam is studied. As the beam flexes, every alternate device
in each row acts as a sensor and the outputs are used in a closed-loop feedback circuit to actuate the
active half of the opposite row of devices. The actuation strain is assumed to be opposed in sign to
the bending strain for all actuation. The result is an apparent stiffening of the beam and an
accompanying increase in the natural frequency o, if all losses in the system are ignored. The aim
in this study is to generate the electro-mechanical interaction information, necessary for combining
- the device response with that of the host beam, in an integrated dynamical equation of the adaptive

structure. ’ )

Several simplifying assumptions are made in this approximate analytical study. Euler-
Bernoulli beam theory is assumed to apply. Each embedded micro-device is assumed to be a
piezoelectric micro-cylinder of elliptical cross-section, whose polarization axis is oriented along the
length of the beam. The length scale of each device is limited to at least an order of magnitude less
than the beam. Hence, the bending strain is assumed to be approximately uniform over the length
scale of the device. This approximation greatly simplifies the eigenstrain solution. Further, each
device is assumed to be embedded far enough below the free surface of the beam such that Eshelby’s
eigenstrain solution for infinite domains is applicable. Finally, the distance between neighboring
devices is assumed to be large enough to prevent mutual interactions. Thus, this solution is only
valid for dilute distributions of micro-devices.

As a result of the assumptions presented above, each micro-device is approximated to act like
elastic heterogeneities embedded in an infinite-dimensional host structure. Perfect bonding is
assumed at the interfaces. The sensor/actuator material is assumed to be PZT-5H. All materials are
approximated to be linear and mechanically isotropic. The linearizing assumption limits the validity
of this approximate analysis to small excitation voltages and small deformations. The assumption
of mechanical isotropy is an acceptable approximation for most PZT materials.

3. ANALYSIS

Eshelby’s classical equivalent-inclusion technique is applied to obtain the elastic interaction
fields, both in the device and in the host, under external applied loads and under internal actuation




loads. External loads are handled through Eshelby’s fictitious eigenstrain technique. Internal
actuation loads are treated as a real eigenstrains and are obtained from the linearized, isothermal,
coupled electro-mechanical constitutive models given below. The difference between PZT sensors
and actuators in the present analytical context is that the sensor only has a fictitious eigenstrain due
to external loads, while the actuator has both fictitious and real eigenstrains.

The linearized, isothermal, coupled electro-mechanical constitutive model is [Ikeda, 1990]:

d=C2-hTE (1)
D=heé+gkE

where € is the total strain vector including mechanical as well as electro-mechanical contributions, &

is the mechanical stress vector, E is the electrical field vector, D is the electrical displacement

vector. C is the mechanical stiffness tensor, h is the piezoelectric coupling tensor indicating the
stress caused by completely constrained excitation of the PZT material under a unit applied electrical
field, ¢ is the dielectric tensor for the PZT material. Arrows over a quantity are used to denote
vector quantities, while an underscore is used to denote tensor quantities. Clearly, only the
mechanical portion of this constitutive model applies to the ALPLEX host material.

Eshelby’s method is based upon postulating an equivalent inclusion with a fictitious

eigenstrain which has the same stress field as the real heterogeneity, under both external loads and

( internal actuation strains. Thus, in the heterogeneity:
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- . where & =&% + & ; superscripts D and H on the stiffness indicate the PZT device and the

b

ALPLEX host, respectively; superscripts 0, * , 1, f and * on the stress and strain terms indicate

applied far-field value, perturbation due to the presence of the heterogeneity, real actuation |

 eigenstrains, fictitious eigenstrains due to external loading, and total eigenstrains, respectively.

The real actuation eigenstrain is obtained from Equation (1) as:

€ =dTE 3)
where d=h SP?

d represents the free-expansion of the picioclccnic actuator for a unit applied electric field and S°

‘ is the compliance tensor of the device material.

The total eigenstrain is now related to the disturbance strain by Eshelby’s strain concentration
tensor S:
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Explicit forms for Eshelby’s tensor are readily available in the literature for embedded isotropic
heterogeneities of ellipsoidal geometries. '
Substituting Equation (4) in Equation (2), we obtain:

CP (& + gR* - &%) = CH (@ + ghe - £ - gr) )

Equation (5) can now be solved for the unknown fictitious eigenstrain €° in terms of the

applied external bending strain &° and the real actuation cigenstrain €° . If the applied strain
is uniform, so is the fictitious eigenstrain.



Now, the mechanical and electrical energy terms are computed to obtain the stiffening of the
structure under harmonic excitation, through a suitable variational scheme. The variational principle
is a generalized form of Hamilton’s principle, and may be written as [Tiersten, 1967];

a{f:(L+w>da1=o (6)

where the Lagrangian function L is the difference between the kinetic energy T and the electric
enthalpy H. The work term, W, includes the potential of all applied mechanical loads and the
electrical charges. Thus, using the definition of electric enthalpy [Tiersten, 1967] :
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where © is the natural frequency, p is the density of host or device, @ is the displacement field,

¢ is the resulting potential, A is the surface area, and 7 is the unit outward normal vector. |

The variation of (L+W) yields stationary solutions for which, the Rayleigh quotient can be ‘
presented as [EerNisse, 1967]:
-
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2 This equation has been used to predict the natural frequencies of smart structures with

. .- embedded actuators [Alghamdi and Dasgupta, 1993]. The principal results are summarized below.

AL The first integral in the numerator is the mechanical energy, and is given as [Dasgupta and -
"' Alghamdi, 1992] ; ¢
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where €* is obtained from Equation (5).

In order to perform the integrations in Equations (8) and (9), all that remains now is t
assume explicit representations for the applied flexural strain field, and the actuation eigenstrain. Fé?
example, in the Rayleigh scheme for estimating the natural frequency of conservative systems, an
approximate displacement field can be assumed. In this example, the approximate bending field is
assumed to be harmonic in time and sinusoidal in space:

| |
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where the y axis is oriented along the length of the beam, w is the transverse displacement in the z
direction, @, and a, are the natural frequency and amplitude, respectively, of the n™® mode, L is the
length of the beam, and t is time. Only the fundamental mode (n=1) is of interest in this study.

Thus the only non-zero term in the bending strain field €° is e , and is given as:
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where, z is the distance of the micro-device from the neutral axis of the beam. The only non-zero
component of the actuation voltage vector is now E, and is assumed to be proportional to the output
of the sensory devices, and hence, to the bending strains. Thus E, is written as:

" : 12
E, = E, Sinw,t S.m—“—"Lz (12)

where the amplitude E," is assumed to be proportional to the amplitude of the bending strain due to
the fundamental vibrational mode of the beam, and the non-zero terms of the actuation strain vector
are now written as: .
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€i=d,E , i=1-6 G2

Equations (10-13) are used in Equation (8) to compute the natural frequency of the system.

4. RESULTS AND DISCUSSIONS

Figure (2) shows the increase in the natural frequency as a function of the excitation strain
for different numbers of actuators. For convenience, the natural frequency is normalized with respect
to that for zero electrical excitation. The actuation strain amplitude is normalized with respect to the
far field strain. The increase in the natural frequency is a measure of the stiffening of the beam due
to the actuation loads. Figure (3) illustrates the dependence of this stiffening effect, and hence the
natural frequency, on the Young’s modules of the host material. Figure (4) illustrates the relative
contributions of the mechanical interaction energy, and the electrical energy, towards stiffening of
the structure. The mechanical term is substantially smaller than the electrical term but its relative

. contribution increases as the actuation load or the host stiffness is increased.

The strain concentration factors in the host as a result of the far-field bending and the
actuation loads can also be obtained as a result of this analysis, as shown elsewhere in the literature
[Alghamdi and Dasgupta, 1993]. '

5. CONCLUSIONS

This paper has summarized recent research on the use of Eshelby’s techniques for modeling
the interaction between micro-devices and the surrounding host. This method presented a unified
approach for addressing the interaction mechanics of micro-devices embedded in an adaptive
structure. This technique also gives simultaneous information of the stress and strain concentrations
in the host due to the presence of the micro-device. Such information is important for designing

reliable smart structures.
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Figure 1. Adaptive Beam with Embedded Rows of Micro-devices.
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Figure 3. Plot of Normalized Natural Frequency vs. Host Stiffness.
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Figure 4. The percentage change in Mechanical Energy term relative to Electrical Energy term as
a function of Normalized Actuation strain for different host stiffness.
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