الصفحة الرئيسية
الأقسام العلمية
قسم تقنية المعلومات
قسم علوم الحاسبات
قسم نظم المعلومات
طلابنا
قسم بروشورات الطلاب
وحدة مهارات الحاسب
طلاب الكلية المتفوقين
صفحة الإعلانات الخاصة بطلاب الكلية
خريجو الدفعة الأولى
دفعة 2009
دفعة 2010
دفعة 2011
دفعة 2012
إنجازات الطلاب الخريجين
عمر احمد المحمودي
عمر الحموي
الإرشاد الأكاديمي
معلومات عن الإرشاد الأكاديمي
المر شدون الأكاديميون
معلومات عن تسجيل الموار
حضور المحا ضرات
أسئلة متكررة
أبحاث وأنشطة أكاديمية
الأبحاث
مشاريع بحثية
لعام 1431/1432
لعام 1430/1431
المجموعات البحثية
جائزة أفضل ورقة بحثية في كلية الحاسبات برابغ
المجموعة البحثية الخاصة بعلوم الحاسبات النظرية
المجموعة البحثية الخاصة بالذكاء الإصطناعي والحوسبة
المجموعة البحثية الخاصة بالأحياء الحسابية
مؤتمرات وورش العمل
اكتوبر ٢٠٠٩
نوفمبر ٢٠٠٩
ديسمبر ٢٠٠٩
يناير ٢٠١٠
فبراير ٢٠١٠
مزيد ٢٠١٠
الفصل الثاني 2011
2012
2013
2014
لجنة الإعتماد الأكاديمي ABET
أنشطة نادي كلية الحاسبات برابغ – شطر الطالبات
أنشطة 1434-1435
أنشطة الفصل الثاني1434/ 1435 هـ
النشر العامىي
قسم تقنية المعلومات النشر العامىي
الشراكات المجتمعية
الخدمات الإلكترونية
عمادة تقنية المعلومات
عمادة البحث العلمي
عمادة شؤون المكتبات
عمادة القبول والتسجيل
SIS
تخطيط استراتيجي
نموذج حجز المسرح
الأخبار والفعاليات
آخر الأخبار
عن الكلية
عربي
English
عن الجامعة
القبول
الأكاديمية
البحث والإبتكار
الحياة الجامعية
الخدمات الإلكترونية
صفحة البحث
كلية الحاسبات وتقنية المعلومات برابغ
تفاصيل الوثيقة
نوع الوثيقة
:
مقال في مجلة دورية
عنوان الوثيقة
:
Intelligent Approach for Android Malware Detection
Intelligent Approach for Android Malware Detection
الموضوع
:
علوم حاسبات
لغة الوثيقة
:
الانجليزية
المستخلص
:
As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.
ردمد
:
1976-7277
اسم الدورية
:
TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS
المجلد
:
9
العدد
:
8
سنة النشر
:
1436 هـ
2015 م
نوع المقالة
:
مقالة علمية
تاريخ الاضافة على الموقع
:
Monday, March 7, 2016
الباحثون
اسم الباحث (عربي)
اسم الباحث (انجليزي)
نوع الباحث
المرتبة العلمية
البريد الالكتروني
Altyeb Altaher
Altaher, Altyeb
باحث رئيسي
دكتوراه
altypaltaher@gmail.com
Shubair M Abdalla
Abdalla, Shubair M
باحث مشارك
shubair@squ.edu.om
الملفات
اسم الملف
النوع
الوصف
38334.pdf
pdf
الرجوع إلى صفحة الأبحاث